Nontrivial critical points of asymptotically quadratic functions at resonances
Michal Fečkan
Annales Polonici Mathematici, Tome 66 (1997), p. 43-57 / Harvested from The Polish Digital Mathematics Library

Asymptotically quadratic functions defined on Hilbert spaces are studied by using some results of the theory of Morse-Conley index. Applications are given to existence of nontrivial weak solutions for asymptotically linear elliptic partial and ordinary differential equations at resonances.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270144
@article{bwmeta1.element.bwnjournal-article-apmv67z1p43bwm,
     author = {Michal Fe\v ckan},
     title = {Nontrivial critical points of asymptotically quadratic functions at resonances},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {43-57},
     zbl = {0889.58023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p43bwm}
}
Michal Fečkan. Nontrivial critical points of asymptotically quadratic functions at resonances. Annales Polonici Mathematici, Tome 66 (1997) pp. 43-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p43bwm/

[000] [1] V. Benci, Some applications of the generalized Morse-Conley index, Confer. Semin. Mat. Univ. Bari 218 (1987). | Zbl 0656.58006

[001] [2] M. Fečkan, Critical points of asymptotically quadratic functions, Ann. Polon. Math. 61 (1995), 63-76. | Zbl 0820.58011

[002] [3] M. Fečkan, On a theorem of L. Lefton, Math. Slovaca 42 (1992), 195-200.

[003] [4] L. Lefton, Existence of small solutions to a resonant boundary value problem with large nonlinearity, J. Differential Equations 85 (1990), 171-185. | Zbl 0699.34020

[004] [5] S. Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Differential Equations 78 (1989), 53-73. | Zbl 0672.34037

[005] [6] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. | Zbl 0676.58017

[006] [7] J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner, Leipzig, 1983.

[007] [8] B. Przeradzki, An abstract version of the resonance theorem, Ann. Polon. Math. 53 (1991), 35-43. | Zbl 0746.47043