Certain results including the successive derivatives of the H-function of one and more variables are established. These remove the limitations of Ławrynowicz's (1969) formulas and as a result extend the results of Skibiński [13] and various other authors. As an application some finite expansion formulas are also established, which reduce to hypergeometric functions of one and more variables that are of common interest.
@article{bwmeta1.element.bwnjournal-article-apmv67z1p15bwm, author = {C. M. Joshi and N. L. Joshi}, title = {Successive derivatives and finite expansions involving the H-function of one and more variables}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {15-29}, zbl = {0878.33006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p15bwm} }
C. M. Joshi; N. L. Joshi. Successive derivatives and finite expansions involving the H-function of one and more variables. Annales Polonici Mathematici, Tome 66 (1997) pp. 15-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv67z1p15bwm/
[000] [1] P. Anandani, On the derivative of H-function, Rev. Roumaine Math. Pures Appl. 15 (1970), 189-191. | Zbl 0189.34403
[001] [2] J. L. Burchnall and T. W. Chaundy, On Appell's hypergeometric functions, Quart. J. Math. 11 (1940), 249-270. | Zbl 0025.16301
[002] [3] S. P. Goyal, The H-function of two variables, Kyungpook Math. J. 15 (1975), 117-131. | Zbl 0302.33004
[003] [4] K. C. Gupta and U. C. Jain, On the derivatives of H-function, Proc. Nat. Acad. Sci. India Sect. A 38 (1968), 189-192. | Zbl 0244.33012
[004] [5] R. N. Jain, General series involving H-function, Proc. Cambridge Philos. Soc. 65 (1969), 461-465. | Zbl 0169.08702
[005] [6] C. M. Joshi and N. L. Joshi, Reinvestigation of conditions of convergence of the H-function of two variables, submitted for publication. | Zbl 0878.33006
[006] [7] C. M. Joshi and M. L. Prajapat, On some results concerning generalized H-function of two variables, Indian J. Pure Appl. Math. 8 (1977), 103-116. | Zbl 0364.33007
[007] [8] J. Ławrynowicz, Remarks on the preceding paper of P. Anandani, Ann. Polon. Math. 21 (1969), 120-123.
[008] [9] A. M. Mathai and R. K. Saxena, The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern, New Delhi, 1978. | Zbl 0382.33001
[009] [10] M. L. Oliver and S. L. Kalla, On the derivative of Fox's H-function, Acta Mexican Ci. Tecn. 5 (1971), 3-5.
[010] [11] R. K. Raina, On the repeated differentiation of H-function of two variables, Vijnana Parishad Anusandhan Patrika 21 (1978), 221-228. | Zbl 1195.33141
[011] [12] S. L. Rakesh, On the derivatives of the generalised Fox's H-function of two variables, Vijnana Parishad Anusandhan Patrika 18 (1975), 17-25. | Zbl 1195.33142
[012] [13] P. Skibiński, Some expansion theorems for the H-function, Ann. Polon. Math. 23 (1970), 125-138. | Zbl 0201.39001
[013] [14] L. F. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. | Zbl 0135.28101
[014] [15] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Horwood, Chichester, 1985. | Zbl 0552.33001
[015] [16] H. M. Srivastava and R. Panda, Some expansion theorems and generating relations for the H-function of several complex variables II, Comment. Math. Univ. St. Paul. 25 (1975), 169-197.
[016] [17] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publ., New Delhi-Madras, 1982. | Zbl 0506.33007