It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form , where are homogeneous polynomials of degree 3 with real coefficients (or ), j = 1,...,n and H’(x) is a nilpotent matrix for each . We give another proof of Yu’s theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case , where . Note that the above inequality is not true when the coefficients of H are arbitrary real numbers; cf. [E3].
@article{bwmeta1.element.bwnjournal-article-apmv66z1p67bwm, author = {Ludwik M. Dru\.zkowski}, title = {The Jacobian Conjecture in case of "non-negative coefficients"}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {67-75}, zbl = {0874.13016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p67bwm} }
Ludwik M. Drużkowski. The Jacobian Conjecture in case of "non-negative coefficients". Annales Polonici Mathematici, Tome 66 (1997) pp. 67-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p67bwm/
[000] [BCW] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330. | Zbl 0539.13012
[001] [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. | Zbl 0107.14602
[002] [D1] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313. | Zbl 0504.13006
[003] [D2] L. M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993), 233-244. | Zbl 0781.13015
[004] [D3] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1991.
[005] [D4] L. M. Drużkowski, The Jacobian Conjecture: some steps towards solution, in: Automorphisms of Affine Spaces, A. van den Essen (ed.), Kluwer, 1995, 41-53. | Zbl 0839.13012
[006] [DR] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian Conjecture, Ann. Polon. Math. 46 (1985), 85-90. | Zbl 0644.12010
[007] [E1] A. van den Essen, Polynomial maps and the Jacobian Conjecture, Report 9034, Catholic University, Nijmegen, 1990.
[008] [E2] A. van den Essen, The exotic world of invertible polynomial maps, Nieuw Arch. Wisk. (4) 11 (1) (1993), 21-31. | Zbl 0802.13003
[009] [E3] A. van den Essen, A counterexample to a conjecture of Drużkowski and Rusek, Ann. Polon. Math. 62 (1995), 173-176. | Zbl 0838.14008
[010] [K] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
[011] [KS] T. Krasiński and S. Spodzieja, On linear differential operators related to the n-dimensional Jacobian Conjecture, in: Real Algebraic Geometry, M. Coste, L. Mahé and M.-F. Roy (eds.), Lecture Notes in Math. 1524, Springer, 1992, 308-315. | Zbl 0774.32008
[012] [M] G. H. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), 679-705. | Zbl 0523.34050
[013] [MO] G. H. Meisters and C. Olech, A poly-flow formulation of the Jacobian Conjecture, Bull. Polish Acad. Sci. Math. 35 (1987), 725-731. | Zbl 0646.34018
[014] [P] S. Pinchuk, A counterexample to the real Jacobian Conjecture, Math. Z. 217 (1994), 1-4. | Zbl 0874.26008
[015] [R] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1989.
[016] [RW] K. Rusek and T. Winiarski, Polynomial automorphisms of , Univ. Iagel. Acta Math. 24 (1984), 143-149.
[017] [S] Y. Stein, The Jacobian problem as a system of ordinary differential equations, Israel J. Math. 89 (1995), 301-319. | Zbl 0823.34010
[018] [W] T. Winiarski, Inverse of polynomial automorphisms of , Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 673-674. | Zbl 0451.32014
[019] [Y] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), 141-150 (in Russian). | Zbl 0466.13009
[020] [Yu] J.-T. Yu, On the Jacobian Conjecture: reduction of coefficients, J. Algebra 171 (1995), 515-523. | Zbl 0816.13017