We prove that every holomorphic bijection of a quasi-projective algebraic set onto itself is a biholomorphism. This solves the problem posed in [CR].
@article{bwmeta1.element.bwnjournal-article-apmv66z1p63bwm, author = {S\l awomir Cynk and Kamil Rusek}, title = {Holomorphic bijections of algebraic sets}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {63-66}, zbl = {0878.32018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p63bwm} }
Sławomir Cynk; Kamil Rusek. Holomorphic bijections of algebraic sets. Annales Polonici Mathematici, Tome 66 (1997) pp. 63-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p63bwm/
[000] [B] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. (Basel) 20 (1969), 531-537. | Zbl 0189.21402
[001] [C] S. Cynk, Primary decomposition of algebraic sheaves, preprint, 1995.
[002] [CR] S. Cynk and K. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), 29-35. | Zbl 0761.14005
[003] [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. | Zbl 0747.32001
[004] [N] K. Nowak, Injective endomorphisms of algebraic varieties, Math. Ann. 299 (1994), 769-778. | Zbl 0803.14007
[005] [W] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972. | Zbl 0265.32008