Holomorphic bijections of algebraic sets
Sławomir Cynk ; Kamil Rusek
Annales Polonici Mathematici, Tome 66 (1997), p. 63-66 / Harvested from The Polish Digital Mathematics Library

We prove that every holomorphic bijection of a quasi-projective algebraic set onto itself is a biholomorphism. This solves the problem posed in [CR].

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270017
@article{bwmeta1.element.bwnjournal-article-apmv66z1p63bwm,
     author = {S\l awomir Cynk and Kamil Rusek},
     title = {Holomorphic bijections of algebraic sets},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {63-66},
     zbl = {0878.32018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p63bwm}
}
Sławomir Cynk; Kamil Rusek. Holomorphic bijections of algebraic sets. Annales Polonici Mathematici, Tome 66 (1997) pp. 63-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p63bwm/

[000] [B] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. (Basel) 20 (1969), 531-537. | Zbl 0189.21402

[001] [C] S. Cynk, Primary decomposition of algebraic sheaves, preprint, 1995.

[002] [CR] S. Cynk and K. Rusek, Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math. 56 (1991), 29-35. | Zbl 0761.14005

[003] [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. | Zbl 0747.32001

[004] [N] K. Nowak, Injective endomorphisms of algebraic varieties, Math. Ann. 299 (1994), 769-778. | Zbl 0803.14007

[005] [W] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972. | Zbl 0265.32008