Equivalence of analytic and rational functions
J. Bochnak ; M. Buchner ; W. Kucharz
Annales Polonici Mathematici, Tome 66 (1997), p. 37-42 / Harvested from The Polish Digital Mathematics Library

We give a criterion for a real-analytic function defined on a compact nonsingular real algebraic set to be analytically equivalent to a rational function.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269963
@article{bwmeta1.element.bwnjournal-article-apmv66z1p37bwm,
     author = {J. Bochnak and M. Buchner and W. Kucharz},
     title = {Equivalence of analytic and rational functions},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {37-42},
     zbl = {0879.32006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p37bwm}
}
J. Bochnak; M. Buchner; W. Kucharz. Equivalence of analytic and rational functions. Annales Polonici Mathematici, Tome 66 (1997) pp. 37-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p37bwm/

[000] [1] J. Bochnak, W. Kucharz and M. Shiota, On equivalence of ideals of real global analytic functions and the 17th Hilbert problem, Invent. Math. 63 (1981), 403-421. | Zbl 0467.32003

[001] [2] J. Bochnak, W. Kucharz and M. Shiota, On algebraicity of global real analytic sets and functions, Invent. Math. 70 (1982), 115-156. | Zbl 0502.32021

[002] [3] J. Briançon et H. Skoda, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de Cn, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951. | Zbl 0307.32007

[003] [4] M. Shiota, Equivalence of differentiable mappings and analytic mappings, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 237-322.

[004] [5] M. Shiota, Equivalence of differentiable functions, rational functions and polynomials, Ann. Inst. Fourier (Grenoble) 32 (1982), 167-204. | Zbl 0466.58006

[005] [6] R. Thom, L'équivalence d'une fonction différentiable et d'un polynôme, Topology 3 (1965), suppl. 2, 297-307. | Zbl 0133.30702

[006] [7] J. C. Tougeron, Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb. 71, Springer, 1972. | Zbl 0251.58001