Let X be a real or complex vector space equipped with the strongest vector space topology . Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p275bwm, author = {W. \.Zelazko}, title = {The strongest vector space topology is locally convex on separable linear subspaces}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {275-282}, zbl = {0929.46001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p275bwm} }
W. Żelazko. The strongest vector space topology is locally convex on separable linear subspaces. Annales Polonici Mathematici, Tome 66 (1997) pp. 275-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p275bwm/
[000] [1] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932. | Zbl 0005.20901
[001] [2] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.
[002] [3] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001
[003] [4] A. Grothendieck, Topological Vector Spaces, Gordon and Breach, New York, 1973.
[004] [5] A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201. | Zbl 0837.46037
[005] [6] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. | Zbl 0179.17001
[006] [7] G. Köthe, Topological Vector Spaces II, Springer, Berlin, 1979. | Zbl 0417.46001
[007] [8] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
[008] [9] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
[009] [10] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971. | Zbl 0225.46001
[010] [11] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. | Zbl 0395.46001