The strongest vector space topology is locally convex on separable linear subspaces
W. Żelazko
Annales Polonici Mathematici, Tome 66 (1997), p. 275-282 / Harvested from The Polish Digital Mathematics Library

Let X be a real or complex vector space equipped with the strongest vector space topology τmax. Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269973
@article{bwmeta1.element.bwnjournal-article-apmv66z1p275bwm,
     author = {W. \.Zelazko},
     title = {The strongest vector space topology is locally convex on separable linear subspaces},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {275-282},
     zbl = {0929.46001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p275bwm}
}
W. Żelazko. The strongest vector space topology is locally convex on separable linear subspaces. Annales Polonici Mathematici, Tome 66 (1997) pp. 275-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p275bwm/

[000] [1] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932. | Zbl 0005.20901

[001] [2] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.

[002] [3] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[003] [4] A. Grothendieck, Topological Vector Spaces, Gordon and Breach, New York, 1973.

[004] [5] A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201. | Zbl 0837.46037

[005] [6] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. | Zbl 0179.17001

[006] [7] G. Köthe, Topological Vector Spaces II, Springer, Berlin, 1979. | Zbl 0417.46001

[007] [8] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.

[008] [9] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.

[009] [10] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971. | Zbl 0225.46001

[010] [11] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. | Zbl 0395.46001