Circular operators related to the operator of multiplication by a homomorphism of a locally compact abelian group and its restrictions are completely characterized. As particular cases descriptions of circular operators related to various quantum observables are given.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p253bwm, author = {Wac\l aw Szyma\'nski}, title = {Circular operators related to some quantum observables}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {253-261}, zbl = {0896.47021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p253bwm} }
Wacław Szymański. Circular operators related to some quantum observables. Annales Polonici Mathematici, Tome 66 (1997) pp. 253-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p253bwm/
[000] [AHHK] W. Arveson, D. Hadwin, T. B. Hoover and E. Kymala, Circular operators, Indiana Univ. Math. J. 33 (1984), 583-595.
[001] [D] J. Dixmier, Von Neumann Algebras, North-Holland, 1981.
[002] [Ha] P. R. Halmos, Measure Theory, Van Nostrand, 1964.
[003] [Ho] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1982. | Zbl 0497.46053
[004] [I] E. K. Infantis, Abstract formulation of the quantum mechanical oscillator phase problem, J. Math. Phys. 12 (1971), 1021-1026. | Zbl 0212.16103
[005] [M1] W. Mlak, Notes on quantum circular operators, Institute of Mathematics, Polish Academy of Sciences, preprint 303, 1984.
[006] [M2] W. Mlak, Notes on circular operators I, II, III, IV, Univ. Iagel. Acta Math. 29 (1992), 145-180.
[007] [MS] W. Mlak and M. Słociński, Quantum phase and circular operators, Univ. Iagel. Acta Math., 133-144. | Zbl 0768.47011