Wiener's type regularity criteria on the complex plane
Józef Siciak
Annales Polonici Mathematici, Tome 66 (1997), p. 203-221 / Harvested from The Polish Digital Mathematics Library

We present a number of Wiener’s type necessary and sufficient conditions (in terms of divergence of integrals or series involving a condenser capacity) for a compact set E ⊂ ℂ to be regular with respect to the Dirichlet problem. The same capacity is used to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of ℂ such that d(t-1E|z-a|1)const>0 for 0 < t ≤ 1 and a ∈ E, where d(F) is the logarithmic capacity of F, then the Green function of ℂ E with pole at infinity is Hölder continuous.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269964
@article{bwmeta1.element.bwnjournal-article-apmv66z1p203bwm,
     author = {J\'ozef Siciak},
     title = {Wiener's type regularity criteria on the complex plane},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {203-221},
     zbl = {0871.31001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p203bwm}
}
Józef Siciak. Wiener's type regularity criteria on the complex plane. Annales Polonici Mathematici, Tome 66 (1997) pp. 203-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p203bwm/

[000] [1] L. Białas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104 (1993), 259-268. | Zbl 0814.41014

[001] [2] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, 1993. | Zbl 0782.30022

[002] [3] W. Hayman and Ch. Pommereneke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc. 10 (1978), 219-224.

[003] [4] O. D. Kellogg and F. Vasilesco, A contribution to the theory of capacity, Amer. J. Math. 51 (1929), 515-526. | Zbl 55.0287.05

[004] [5] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966.

[005] [6] J. Lithner, Comparing two versions of Markov's inequality on compact sets, J. Approx. Theory 77 (1994), 202-211. | Zbl 0821.41015

[006] [7] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. | Zbl 0739.30008

[007] [8] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990), 106-117.

[008] [9] Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel) 32 (1980), 192-199.

[009] [10] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in n, Sophia Kokyuroku in Math. 14, Sophia University, Tokyo, 1982.

[010] [11] J. Siciak, Rapid polynomial approximation on compact sets in N, Univ. Iagel. Acta Math. 30 (1993), 145-154. | Zbl 0838.32007

[011] [12] J. Siciak, Compact sets in n admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448.

[012] [13] J. Siciak, Wiener’s type sufficient conditions in N, to appear.

[013] [14] V. Totik, Markoff constants for Cantor sets, to appear. | Zbl 0846.41012

[014] [15] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. | Zbl 0087.28401

[015] [16] C. de la Vallée-Poussin, Points irréguliers. Détermination des masses par les potentiels, Bull. Cl. Sci. Bruxelles (5) 24 (1938), 672-689. | Zbl 64.1162.01

[016] [17] H. Wallin and P. Wingren, Dimension and geometry of sets defined by polynomial inequalities, J. Approx. Theory 69 (1992), 231-249. | Zbl 0754.41010

[017] [18] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc., Providence, R.I., 1935. Third edition, 1960. | Zbl 0013.05903

[018] [19] N. Wiener, The Dirichlet problem, J. Math. Phys. Mass. Inst. Techn. 3 (1924), 127-146. | Zbl 51.0361.01