We present a number of Wiener’s type necessary and sufficient conditions (in terms of divergence of integrals or series involving a condenser capacity) for a compact set E ⊂ ℂ to be regular with respect to the Dirichlet problem. The same capacity is used to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of ℂ such that for 0 < t ≤ 1 and a ∈ E, where d(F) is the logarithmic capacity of F, then the Green function of ℂ E with pole at infinity is Hölder continuous.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p203bwm, author = {J\'ozef Siciak}, title = {Wiener's type regularity criteria on the complex plane}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {203-221}, zbl = {0871.31001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p203bwm} }
Józef Siciak. Wiener's type regularity criteria on the complex plane. Annales Polonici Mathematici, Tome 66 (1997) pp. 203-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p203bwm/
[000] [1] L. Białas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104 (1993), 259-268. | Zbl 0814.41014
[001] [2] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, 1993. | Zbl 0782.30022
[002] [3] W. Hayman and Ch. Pommereneke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc. 10 (1978), 219-224.
[003] [4] O. D. Kellogg and F. Vasilesco, A contribution to the theory of capacity, Amer. J. Math. 51 (1929), 515-526. | Zbl 55.0287.05
[004] [5] N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966.
[005] [6] J. Lithner, Comparing two versions of Markov's inequality on compact sets, J. Approx. Theory 77 (1994), 202-211. | Zbl 0821.41015
[006] [7] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. | Zbl 0739.30008
[007] [8] W. Pleśniak, Markov’s inequality and the existence of an extension operator for functions, J. Approx. Theory 61 (1990), 106-117.
[008] [9] Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel) 32 (1980), 192-199.
[009] [10] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in , Sophia Kokyuroku in Math. 14, Sophia University, Tokyo, 1982.
[010] [11] J. Siciak, Rapid polynomial approximation on compact sets in , Univ. Iagel. Acta Math. 30 (1993), 145-154. | Zbl 0838.32007
[011] [12] J. Siciak, Compact sets in admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448.
[012] [13] J. Siciak, Wiener’s type sufficient conditions in , to appear.
[013] [14] V. Totik, Markoff constants for Cantor sets, to appear. | Zbl 0846.41012
[014] [15] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. | Zbl 0087.28401
[015] [16] C. de la Vallée-Poussin, Points irréguliers. Détermination des masses par les potentiels, Bull. Cl. Sci. Bruxelles (5) 24 (1938), 672-689. | Zbl 64.1162.01
[016] [17] H. Wallin and P. Wingren, Dimension and geometry of sets defined by polynomial inequalities, J. Approx. Theory 69 (1992), 231-249. | Zbl 0754.41010
[017] [18] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc., Providence, R.I., 1935. Third edition, 1960. | Zbl 0013.05903
[018] [19] N. Wiener, The Dirichlet problem, J. Math. Phys. Mass. Inst. Techn. 3 (1924), 127-146. | Zbl 51.0361.01