A natural localization of Hardy spaces in several complex variables
Mihai Putinar ; Roland Wolff
Annales Polonici Mathematici, Tome 66 (1997), p. 183-201 / Harvested from The Polish Digital Mathematics Library

Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in n. The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop’s property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269954
@article{bwmeta1.element.bwnjournal-article-apmv66z1p183bwm,
     author = {Mihai Putinar and Roland Wolff},
     title = {A natural localization of Hardy spaces in several complex variables},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {183-201},
     zbl = {0886.46054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p183bwm}
}
Mihai Putinar; Roland Wolff. A natural localization of Hardy spaces in several complex variables. Annales Polonici Mathematici, Tome 66 (1997) pp. 183-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p183bwm/

[000] [1] E. Bishop, A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379-394. | Zbl 0086.31702

[001] [2] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, Boca Raton, Fla., 1991.

[002] [3] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1) (1966), 1-95. | Zbl 0146.31103

[003] [4] R. G. Douglas and V. Paulsen, Hilbert Modules over Function Algebras, Pitman Res. Notes Math. Ser. 219, Harlow, 1989. | Zbl 0686.46035

[004] [5] R. G. Douglas, V. Paulsen, C. H. Sah, and K. Yan, Algebraic reduction and rigidity for Hilbert modules, Amer. J. Math. 117 (1995), 75-92. | Zbl 0833.46040

[005] [6] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.

[006] [7] J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monographs, Oxford Univ. Press, Oxford, 1996. | Zbl 0855.47013

[007] [8] C. Foiaş, Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. (Basel) 14 (1963), 341-349. | Zbl 0176.43802

[008] [9] G. M. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59-130 (transl. from Uspekhi Mat. Nauk 32 (3) (1977), 57-118). | Zbl 0382.35038

[009] [10] J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), 525-545. | Zbl 0609.32015

[010] [11] S. G. Krantz, Function Theory of Several Complex Variables, Wadsworth, Belmont, Calif., 1992. | Zbl 0776.32001

[011] [12] S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, Fla., 1992. | Zbl 0852.35001

[012] [13] M. Putinar, Quasi-similarity of tuples with Bishop's property (β), Integral Equations Operator Theory 15 (1992), 1047-1052. | Zbl 0773.47011

[013] [14] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, New York, 1986. | Zbl 0591.32002

[014] [15] M.-C. Shaw, Local solvability and estimates for ̅b on CR manifolds, in: Proc. Sympos. Pure Math. 52, Amer. Math. Soc., Providence, R.I., 1991, 335-345.

[015] [16] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967. | Zbl 0171.10402

[016] [17] F. H. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, Reidel, Dordrecht, 1982. | Zbl 0495.47013

[017] [18] R. Wolff, Spectra of analytic Toeplitz tuples on Hardy spaces, Bull. London Math. Soc., to appear | Zbl 0865.47003