We prove the -spectral radius formula for n-tuples of commuting Banach algebra elements
@article{bwmeta1.element.bwnjournal-article-apmv66z1p173bwm, author = {Vladim\'\i r M\"uller}, title = {On the joint spectral radius}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {173-182}, zbl = {0877.46037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p173bwm} }
Vladimír Müller. On the joint spectral radius. Annales Polonici Mathematici, Tome 66 (1997) pp. 173-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p173bwm/
[000] [1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. | Zbl 0818.15006
[001] [2] J. W. Bunce, Models for n-tuples of non-commuting operators, J. Funct. Anal. 57 (1984), 21-30. | Zbl 0558.47004
[002] [3] M. Chō and T. Huruya, On the spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. | Zbl 0776.47004
[003] [4] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. | Zbl 0784.47004
[004] [5] C.-K. Fong and A. Sołtysiak, Existence of a multiplicative linear functional and joint spectra, Studia Math. 81 (1985), 213-220. | Zbl 0529.46034
[005] [6] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. | Zbl 0812.47004
[006] [7] P. Rosenthal and A. Sołtysiak, Formulas for the joint spectral radius of non-commuting Banach algebra elements, Proc. Amer. Math. Soc. 123 (1995), 2705-2708. | Zbl 0849.46034
[007] [8] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. | Zbl 0095.09701
[008] [9] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolin. 32 (1991), 715-721. | Zbl 0763.46037
[009] [10] A. Sołtysiak, On the joint spectral radii of commuting Banach algebra elements, Studia Math. 105 (1993), 93-99. | Zbl 0811.46047