A generalization of the Carleman criterion for selfadjointness of Jacobi matrices to the case of symmetric matrices with finite rows is established. In particular, a new proof of the Carleman criterion is found. An extension of Jørgensen's criterion for selfadjointness of symmetric operators with "almost invariant" subspaces is obtained. Some applications to hyponormal weighted shifts are given.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p155bwm, author = {Jan Janas and Jan Stochel}, title = {Selfadjoint operator matrices with finite rows}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {155-172}, zbl = {0894.47022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p155bwm} }
Jan Janas; Jan Stochel. Selfadjoint operator matrices with finite rows. Annales Polonici Mathematici, Tome 66 (1997) pp. 155-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p155bwm/
[000] [1] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math. 14 (1961), 187-214. | Zbl 0107.09102
[001] [2] Yu. M. Berezanskiĭ, Eigenfunction Expansions for Selfadjoint Operators, Naukova Dumka, Kiev, 1965 (in Russian).
[002] [3] T. Carleman, Sur la théorie mathématique de l'équation de Schrödinger, Ark. Mat. Astr. Fys. 24 (1934), 1-7. | Zbl 0009.35702
[003] [4] W. Dahmen and C. A. Micchelli, Banded matrices with banded inverses, II: locally finite decomposition of spline spaces, Constr. Approx 9 (1993), 263-281. | Zbl 0784.15005
[004] [5] S. Demko, Inverses of band matrices and local convergence of spline projectors, SIAM J. Numer. Anal. 14 (1977), 616-619. | Zbl 0367.65024
[005] [6] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J., 1967.
[006] [7] J. Janas, Unbounded Toeplitz operators in the Bargmann-Segal space, Studia Math. 99 (1991), 87-99. | Zbl 0766.47004
[007] [8] J. Janas and J. Stochel, Unbounded Toeplitz operators in the Segal-Bargmann space. II, J. Funct. Anal. 126 (1994), 418-447. | Zbl 0824.47021
[008] [9] P. E. T. Jørgensen, Approximately reducing subspaces for unbounded linear operators, J. Funct. Anal. 23 (1976), 392-414. | Zbl 0341.47024
[009] [10] P. E. T. Jørgensen, Essential self-adjointness of semibounded operators, Math. Ann. 237 (1978), 187-192. | Zbl 0386.47010
[010] [11] W. Mlak, The Schrödinger type couples related to weighted shifts, Univ. Iagel. Acta Math. 27 (1988), 297-301. | Zbl 0695.47022
[011] [12] M. H. Stone, Linear Transformations in Hilbert Space and Their Applications to Analysis, Amer. Math. Soc. Colloq. Publ. 15, Amer. Math. Soc., Providence, R.I., 1932.
[012] [13] O. Toeplitz, Zur Theorie der quadratischen Formen von unendlichvielen Veränderlichen, Göttingen Nachr. 1910, 489-506. | Zbl 41.0381.02
[013] [14] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980. | Zbl 0434.47001