We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p123bwm, author = {A. Guichardet}, title = {Sur une alg\`ebre Q-sym\'etrique}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {123-135}, zbl = {0878.16016}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p123bwm} }
A. Guichardet. Sur une algèbre Q-symétrique. Annales Polonici Mathematici, Tome 66 (1997) pp. 123-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p123bwm/
[000] [1] J. Alev et M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra 20 (1992), 1787-1802. | Zbl 0760.17003
[001] [2] A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527. | Zbl 0864.17006
[002] [3] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, The 3-dimensional Euclidean quantum group and its R-matrix, J. Math. Phys. 32 (1991), 1159-1165. | Zbl 0743.17017
[003] [4] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994. | Zbl 0839.17009
[004] [5] A. Guichardet, Groupes quantiques, InterEditions, 1995.
[005] [6] C. Kassel, Quantum Groups, Springer, 1995.
[006] [7] R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51. | Zbl 0353.16004
[007] [8] Ya. S. Soĭbel'man, The algebra of functions on a compact quantum group and its representations, Algebra i Analiz 2 (1) (1990), 190-212 (in Russian); English transl.: Leningrad Math. J. 2 (1) (1991), 161-178. | Zbl 0708.46029
[008] [9] L. L. Vaksman and Y. S. Soĭbel'man, An algebra of functions on the quantum group SU(2), Funktsional. Anal. i Prilozhen. 22 (3) (1988), 1-14 (in Russian); English transl.: Funct. Anal. Appl. 22 (3) (1988), 170-181. | Zbl 0661.43001
[009] [10] M. Van den Bergh, Noncommutative homology of some 3-dimensional quantum spaces, K-Theory 8 (1994), 213-230.
[010] [11] M. Wambst, Complexes de Koszul quantiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1089-1156. | Zbl 0810.16010
[011] [12] S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251-263. | Zbl 0752.17017