We show a polynomially boundend operator T is similar to a unitary operator if there is a singular unitary operator W and an injection X such that XT = WX. If, in addition, T is of class , then T itself is unitary.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p11bwm, author = {T. Ando and K. Takahashi}, title = {On operators with unitary r-dilations}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {11-14}, zbl = {0873.47004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p11bwm} }
T. Ando; K. Takahashi. On operators with unitary ϱ-dilations. Annales Polonici Mathematici, Tome 66 (1997) pp. 11-14. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p11bwm/
[000] [1] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. | Zbl 0117.34001
[001] [2] W. Mlak, Algebraic polynomially bounded operators, Ann. Polon. Math. 29 (1974), 103-109. | Zbl 0292.47014
[002] [3] W. Mlak, Operator valued representations of function algebras, in: Linear Operators and Approximation II, Proc. Conf. Oberwolfach Math. Res. Inst., Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 49-79.
[003] [4] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
[004] [5] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. | Zbl 0201.45003
[005] [6] H. Watanabe, Operators characterized by certain Cauchy-Schwarz type inequalities, Publ. Res. Inst. Math. Sci. 30 (1994), 249-259. | Zbl 0815.47028