The aim of this paper is to find conditions that assure the existence of the commutant lifting theorem for commuting pairs of contractions (briefly, bicontractions) having (*-)regular dilations. It is known that in such generality, a commutant lifting theorem fails to be true. A positive answer is given for contractive intertwinings which doubly intertwine one of the components. We also show that it is possible to drop the doubly intertwining property for one of the components in some special cases, for instance for semi-subnormal bicontractions. As an application, a result regarding the existence of a unitary (isometric) dilation for three commuting contractions is obtained.
@article{bwmeta1.element.bwnjournal-article-apmv66z1p105bwm, author = {Dumitru Ga\c spar and Nicolae Suciu}, title = {On the intertwinings of regular dilations}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {105-121}, zbl = {0874.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p105bwm} }
Dumitru Gaşpar; Nicolae Suciu. On the intertwinings of regular dilations. Annales Polonici Mathematici, Tome 66 (1997) pp. 105-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv66z1p105bwm/
[000] [1] T. Ando, On a pair of commutative contractions, Acta Sci. Math. 24 (1963), 88-90. | Zbl 0116.32403
[001] [2] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (2) (1990), 339-350. | Zbl 0738.47005
[002] [3] S. Brehmer, Über vertauschbare Kontraktionen des Hilbertschen Raumes, Acta Sci. Math. (Szeged) 22 (1961), 106-111. | Zbl 0097.31701
[003] [4] R. E. Curto and F. H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), 791-810. | Zbl 0805.47007
[004] [5] C. Foiaş and A. E. Frazho, The Commutant Lifting Approach to Interpolation Problems, Birkhäuser, Basel, 1990. | Zbl 0718.47010
[005] [6] T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (2) (1981), 240-242. | Zbl 0458.47020
[006] [7] D. Gaşpar and N. Suciu, Intertwining properties of isometric semigroups and Wold-type decompositions, in: Oper. Theory Adv. Appl. 24, Birkhäuser, Basel, 1987, 183-193.
[007] [8] D. Gaşpar and N. Suciu, On the Geometric Structure of Regular Dilations, Oper. Theory Adv. Appl., Birkhäuser, 1996.
[008] [9] D. Gaşpar and N. Suciu, On intertwining liftings of the distinguished dilations of bicontractions, to appear. | Zbl 0970.47004
[009] [10] I. Halperin, Sz.-Nagy-Brehmer dilations, Acta Sci. Math. (Szeged) 23 (1962), 279-289. | Zbl 0111.11402
[010] [11] M. Kosiek, A. Octavio and M. Ptak, On the reflexivity of pairs of contractions, Proc. Amer. Math. Soc. 123 (1995), 1229-1236. | Zbl 0836.47006
[011] [12] W. Mlak, Intertwining operators, Studia Math. 43 (1972), 219-233. | Zbl 0257.46081
[012] [13] W. Mlak, Commutants of subnormal operators, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 19 (9) (1971), 837-842. | Zbl 0227.46076
[013] [14] V. Müller, Commutant lifting theorem for n-tuples of contractions, Acta Sci. Math. (Szeged) 59 (1994), 465-474. | Zbl 0822.47009
[014] [15] S. Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481-490. | Zbl 0202.41802
[015] [16] M. Słociński, Isometric dilations of doubly commuting contractions and related models, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (12) (1977), 1233-1242. | Zbl 0384.47005
[016] [17] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262. | Zbl 0485.47018
[017] [18] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam-Budapest, 1970. | Zbl 0201.45003