A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.
@article{bwmeta1.element.bwnjournal-article-apmv65z3p271bwm, author = {J. J. Koliha and Ivan Stra\v skraba}, title = {Stabilization of solutions to a differential-delay equation in a Banach space}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {271-281}, zbl = {0879.34070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p271bwm} }
J. J. Koliha; Ivan Straškraba. Stabilization of solutions to a differential-delay equation in a Banach space. Annales Polonici Mathematici, Tome 66 (1997) pp. 271-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p271bwm/
[000] [1] J. K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. | Zbl 0352.34001
[001] [2] J. S. Jung, J. Y. Park and H. J. Kang, Asymptotic behavior of solutions of nonlinear functional differential equations, Internat. J. Math. Math. Sci. 17 (1994), 703-712. | Zbl 0816.47070
[002] [3] J. J. Koliha and I. Straškraba, Stability in nonlinear evolution problems by means of fixed point theorems, Comment. Math. Univ. Carolin. 38 (1) (1997), to appear. | Zbl 0891.34065
[003] [4] S. Murakami, Stable equilibrium point of some diffusive functional differential equations, Nonlinear Anal. 25 (1995), 1037-1043. | Zbl 0841.35121
[004] [5] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
[005] [6] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418. | Zbl 0299.35085
[006] [7] C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl. 56 (1976), 397-409. | Zbl 0349.35071
[007] [8] T. Wang, Stability in abstract functional differential equations. Part I. General theorems, J. Math. Anal. Appl. 186 (1994), 534-558. | Zbl 0814.34066
[008] [9] T. Wang, Stability in abstract functional differential equations, Part II. Applications, J. Math. Anal. Appl. 186 (1994), 835-861. | Zbl 0822.34065
[009] [10] G. F. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230. | Zbl 0324.34079