A generalized periodic boundary value problem for the one-dimensional p-Laplacian
Daqing Jiang ; Junyu Wang
Annales Polonici Mathematici, Tome 66 (1997), p. 265-270 / Harvested from The Polish Digital Mathematics Library

The generalized periodic boundary value problem -[g(u’)]’ = f(t,u,u’), a < t < b, with u(a) = ξu(b) + c and u’(b) = ηu’(a) is studied by using the generalized method of upper and lower solutions, where ξ,η ≥ 0, a, b, c are given real numbers, g(s)=|s|p-2s, p > 1, and f is a Carathéodory function satisfying a Nagumo condition. The problem has a solution if and only if there exists a lower solution α and an upper solution β with α(t) ≤ β(t) for a ≤ t ≤ b.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269940
@article{bwmeta1.element.bwnjournal-article-apmv65z3p265bwm,
     author = {Daqing Jiang and Junyu Wang},
     title = {A generalized periodic boundary value problem for the one-dimensional p-Laplacian},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {265-270},
     zbl = {0868.34015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p265bwm}
}
Daqing Jiang; Junyu Wang. A generalized periodic boundary value problem for the one-dimensional p-Laplacian. Annales Polonici Mathematici, Tome 66 (1997) pp. 265-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p265bwm/

[000] [1] W. J. Gao and J. Y. Wang, On a nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. 62 (1995), 283-291. | Zbl 0839.34031

[001] [2] J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tôhoku Math. J. 47 (1995), 327-344. | Zbl 0845.34038

[002] [3] M. X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221-235. | Zbl 0789.34027