The generalized periodic boundary value problem -[g(u’)]’ = f(t,u,u’), a < t < b, with u(a) = ξu(b) + c and u’(b) = ηu’(a) is studied by using the generalized method of upper and lower solutions, where ξ,η ≥ 0, a, b, c are given real numbers, , p > 1, and f is a Carathéodory function satisfying a Nagumo condition. The problem has a solution if and only if there exists a lower solution α and an upper solution β with α(t) ≤ β(t) for a ≤ t ≤ b.
@article{bwmeta1.element.bwnjournal-article-apmv65z3p265bwm, author = {Daqing Jiang and Junyu Wang}, title = {A generalized periodic boundary value problem for the one-dimensional p-Laplacian}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {265-270}, zbl = {0868.34015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p265bwm} }
Daqing Jiang; Junyu Wang. A generalized periodic boundary value problem for the one-dimensional p-Laplacian. Annales Polonici Mathematici, Tome 66 (1997) pp. 265-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p265bwm/
[000] [1] W. J. Gao and J. Y. Wang, On a nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. 62 (1995), 283-291. | Zbl 0839.34031
[001] [2] J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tôhoku Math. J. 47 (1995), 327-344. | Zbl 0845.34038
[002] [3] M. X. Wang, A. Cabada and J. J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221-235. | Zbl 0789.34027