We construct a sequence of homogeneous polynomials on the unit ball in which are big at each point of the unit sphere . As an application we construct a holomorphic function on which is not integrable with any power on the intersection of with any complex subspace.
@article{bwmeta1.element.bwnjournal-article-apmv65z3p245bwm, author = {P. Wojtaszczyk}, title = {On highly nonintegrable functions and homogeneous polynomials}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {245-251}, zbl = {0872.32001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p245bwm} }
P. Wojtaszczyk. On highly nonintegrable functions and homogeneous polynomials. Annales Polonici Mathematici, Tome 66 (1997) pp. 245-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z3p245bwm/
[000] [1] A. B. Aleksandrov, Proper holomorphic maps from the ball into a polydisc, Dokl. Akad. Nauk SSSR 286 (1986), 11-15 (in Russian).
[001] [2] P. Jakóbczak, Highly nonintegrable functions in the unit ball, Israel J. Math., to appear. | Zbl 0887.32004
[002] [3] A. Nakamura, F. Ohya and H. Watanabe, On some properties of functions in weighted Bergman spaces, Proc. Fac. Sci. Tokyo Univ. 15 (1979), 33-44. | Zbl 0442.30032
[003] [4] W. Rudin, Function Theory in the Unit Ball of , Springer, New York, 1980.
[004] [5] J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), 107-116. | Zbl 0522.32004
[005] [6] S. V. Shvedenko, On the Taylor coefficients of functions from Bergman spaces in the polydisk, Dokl. Akad. Nauk SSSR 283 (1985), 325-328 (in Russian).
[006] [7] P. Wojtaszczyk, On values of homogeneous polynomials in discrete sets of points, Studia Math. 84 (1986), 97-104. | Zbl 0611.32006