Certain partial differential subordinations on some Reinhardt domains in n
Gabriela Kohr ; Mirela Kohr
Annales Polonici Mathematici, Tome 66 (1997), p. 179-191 / Harvested from The Polish Digital Mathematics Library

We obtain an extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined in some Reinhardt domains in n. Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain B2p with p ≥ 1.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269941
@article{bwmeta1.element.bwnjournal-article-apmv65z2p179bwm,
     author = {Gabriela Kohr and Mirela Kohr},
     title = {Certain partial differential subordinations on some Reinhardt domains in $$\mathbb{C}$^n$
            },
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {179-191},
     zbl = {0872.32003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p179bwm}
}
Gabriela Kohr; Mirela Kohr. Certain partial differential subordinations on some Reinhardt domains in $ℂ^n$
            . Annales Polonici Mathematici, Tome 66 (1997) pp. 179-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p179bwm/

[000] [C] B. Chabat, Introduction à l'analyse complexe, tome II, Mir, Moscou, 1990.

[001] [GW] S. Gong and S. K. Wang, A necessary and sufficient condition that biholomorphic mappings are starlike on a class of Reinhardt domains, Chinese Ann. Math. Ser. B 13 (1) (1992), 95-104. | Zbl 0793.32001

[002] [GWQ] S. Gong, S. K. Wang and Q. Yu, Biholomorphic convex mappings of ball in n, Pacific J. Math. 161 (1993), 287-306. | Zbl 0788.32017

[003] [K] K. Kikuchi, Starlike and convex mappings in several complex variables, Pacific J. Math. 44 (1973), 569-580. | Zbl 0262.32009

[004] [KO1] G. Kohr, On some partial differential subordinations for holomorphic mappings in n, Libertas Math. 115 (1996), 129-142.

[005] [KO2] G. Kohr and M. Kohr-Ile, Partial differential subordinations for holomorphic mappings of several complex variables, Studia Univ. Babeş-Bolyai Math. 60 (4) (1995), 46-62. | Zbl 0862.32017

[006] [KO3] G. Kohr and P. Liczberski, General partial differential subordinations for holomorphic mappings in n, Math. Nachr., to appear. | Zbl 1011.32011

[007] [KO4] G. Kohr and C. Pintea, An extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined on some domains in n, to appear. | Zbl 0881.32012

[008] [L] P. Liczberski, Jack’s Lemma for holomorphic mappings in n, Ann. Univ. Mariae Curie-Skłodowska Sect. A 40 (1986), 131-140.

[009] [MM1] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305. | Zbl 0367.34005

[010] [MM2] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67 (1987), 199-211. | Zbl 0633.34005

[011] [S1] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math. 33 (1970), 241-248. | Zbl 0196.09601

[012] [S2] T. J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, in: Lecture Notes in Math. 599, Springer, 1976, 146-159.