Hyperbolic homeomorphisms on compact manifolds are shown to have both inverse shadowing and bishadowing properties with respect to a class of δ-methods which are represented by continuous mappings from the manifold into the space of bi-infinite sequences in the manifold with the product topology. Topologically stable homeomorphisms and expanding mappings are also considered.
@article{bwmeta1.element.bwnjournal-article-apmv65z2p171bwm, author = {P. E. Kloeden and J. Ombach}, title = {Hyperbolic homeomorphisms and bishadowing}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {171-177}, zbl = {0877.58044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p171bwm} }
P. E. Kloeden; J. Ombach. Hyperbolic homeomorphisms and bishadowing. Annales Polonici Mathematici, Tome 66 (1997) pp. 171-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p171bwm/
[000] [1] N. Aoki, Topological Dynamics, in: Topics in General Topology, K. Morita and J. Nagata (eds.), Elsevier, 1989, 625-739. | Zbl 0694.54032
[001] [2] R. Corless and S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), 409-423. | Zbl 0821.58036
[002] [3] P. Diamond, P. E. Kloeden, V. Kozyakin and A. Pokrovskiĭ, Expansivity of semi-hyperbolic Lipschitz mappings, Bull. Austral. Math. Soc. 51 (1995), 301-308. | Zbl 0826.58028
[003] [4] P. Diamond, P. E. Kloeden, V. Kozyakin and A. Pokrovskiĭ, Computer robustness of semi-hyperbolic mappings, Random Comput. Dynam. 3 (1995), 57-70. | Zbl 0849.58051
[004] [5] P. Diamond, P. E. Kloeden, V. Kozyakin and A. Pokrovskiĭ, Robustness of observed behaviour of semi-hyperbolic dynamical systems, Avtomat. i Telemekh. 11 (1995), to appear (in Russian). | Zbl 0849.58051
[005] [6] P. Diamond, P. E. Kloeden and A. Pokrovskiĭ, Shadowing and approximation in dynamical systems, in: CMA 3rd Miniconference on Analysis, G. Martin and H. B. Thompson (eds.), Proc. Centre Math. Appl. Austral. Nat. Univ. 33, Austral. Nat. Univ., Canberra, 1994, 47-60.
[006] [7] R. Ma né, Ergodic Theory and Differentiable Dynamics, Springer, 1987.
[007] [8] J. Munkres, Elementary Differential Topology, Princeton Univ. Press, 1963.
[008] [9] J. Ombach, Equivalent conditions for hyperbolic coordinates, Topology Appl. 23 (1986), 87-90. | Zbl 0597.58023
[009] [10] J. Ombach, Consequences of the pseudo-orbits tracing property and expansiveness, J. Austral. Math. Soc. Ser. A 43 (1987), 301-313. | Zbl 0653.58030
[010] [11] J. Ombach, Expansive homeomorphisms with the pseudo orbits tracing property, preprint 383, Inst. Math. Polish Acad. Sci., 1987.
[011] [12] S. Pilyugin, The space of Dynamical Systems with C⁰-Topology, Lecture Notes in Math. 1571, Springer, 1991.
[012] [13] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, 1978.
[013] [14] P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in: Lecture Notes in Math. 668, Springer, 1978, 231-244.