On weak solutions of functional-differential abstract nonlocal Cauchy problems
Ludwik Byszewski
Annales Polonici Mathematici, Tome 66 (1997), p. 163-170 / Harvested from The Polish Digital Mathematics Library

The existence, uniqueness and asymptotic stability of weak solutions of functional-differential abstract nonlocal Cauchy problems in a Banach space are studied. Methods of m-accretive operators and the Banach contraction theorem are applied.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269998
@article{bwmeta1.element.bwnjournal-article-apmv65z2p163bwm,
     author = {Ludwik Byszewski},
     title = {On weak solutions of functional-differential abstract nonlocal Cauchy problems},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {163-170},
     zbl = {0874.47026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p163bwm}
}
Ludwik Byszewski. On weak solutions of functional-differential abstract nonlocal Cauchy problems. Annales Polonici Mathematici, Tome 66 (1997) pp. 163-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p163bwm/

[000] [1] J. Bochenek, An abstract semilinear first order differential equation in the hyperbolic case, Ann. Polon. Math. 61 (1995), 13-23. | Zbl 0847.34064

[001] [2] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505. | Zbl 0748.34040

[002] [3] L. Byszewski, Uniqueness criterion for solution of abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal. 6 (1993), 49-54. | Zbl 0776.34050

[003] [4] L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, in: Selected Problems of Mathematics, Cracow University of Technology, Anniversary Issue 6 (1995), 25-33.

[004] [5] M. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57-94.

[005] [6] L. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1-42. | Zbl 0349.34043

[006] [7] A. Kartsatos, A direct method for the existence of evolution operators associated with functional evolutions in general Banach spaces, Funkcial. Ekvac. 31 (1988), 89-102. | Zbl 0654.47028

[007] [8] A. Kartsatos and M. Parrott, A simplified approach to the existence and stability problem of a functional evolution equation in a general Banach space, in: Infinite Dimensional Systems, (F. Kappel and W. Schappacher (eds.), Lecture Notes in Math. 1076, Springer, Berlin, 1984, 115-122. | Zbl 0544.34064

[008] [9] T. Winiarska, Parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 51 (1990), 325-339. | Zbl 0738.35020

[009] [10] T. Winiarska, Regularity of solutions of parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 56 (1992), 311-317. | Zbl 0763.35015