Let T be a bounded linear operator acting on a complex, separable, infinite-dimensional Hilbert space and let f: D → ℂ be an analytic function defined on an open set D ⊆ ℂ which contains the spectrum of T. If T is the limit of hypercyclic operators and if f is nonconstant on every connected component of D, then f(T) is the limit of hypercyclic operators if and only if is connected, where denotes the Weyl spectrum of T.
@article{bwmeta1.element.bwnjournal-article-apmv65z2p157bwm, author = {Christoph Schmoeger}, title = {On the norm-closure of the class of hypercyclic operators}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {157-161}, zbl = {0896.47013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p157bwm} }
Christoph Schmoeger. On the norm-closure of the class of hypercyclic operators. Annales Polonici Mathematici, Tome 66 (1997) pp. 157-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p157bwm/
[000] [1] C. Bosch, C. Hernández, E. De Oteyza and C. Pearcy, Spectral pictures of functions of operators, J. Operator Theory 8 (1982), 391-400. | Zbl 0497.47002
[001] [2] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. | Zbl 0203.45601
[002] [3] D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179-190. | Zbl 0758.47016
[003] [4] G. Herzog and C. Schmoeger, On operators T such that f(T) is hypercyclic, Studia Math. 108 (1994), 209-216. | Zbl 0818.47011
[004] [5] H. Heuser, Funktionalanalysis, 2nd ed., Teubner, Stuttgart, 1986.
[005] [6] K. K. Oberai, Spectral mapping theorem for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373. | Zbl 0439.47008
[006] [7] C. Pearcy, Some Recent Developments in Operator Theory, CBMS Regional Conf. Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
[007] [8] C. Schmoeger, Ascent, descent and the Atkinson region in Banach algebras, II, Ricerche Mat. 42 (1993), 249-264. | Zbl 0807.46054