On continuous solutions of a functional equation
Kazimierz Dankiewicz
Annales Polonici Mathematici, Tome 66 (1997), p. 151-156 / Harvested from The Polish Digital Mathematics Library

This paper discusses continuous solutions of the functional equation φ[f(x)] = g(x,φ(x)) in topological spaces.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269948
@article{bwmeta1.element.bwnjournal-article-apmv65z2p151bwm,
     author = {Kazimierz Dankiewicz},
     title = {On continuous solutions of a functional equation},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {151-156},
     zbl = {0873.39011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p151bwm}
}
Kazimierz Dankiewicz. On continuous solutions of a functional equation. Annales Polonici Mathematici, Tome 66 (1997) pp. 151-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p151bwm/

[000] [1] K. Baron, On extending solutions of a functional equation, Aequationes Math. 13 (1975), 285-288. | Zbl 0344.39006

[001] [2] K. Baron, Functional equations of infinite order, Prace Nauk. Uniw. Śląsk. 265 (1978).

[002] [3] M. Kuczma, General solution of the functional equation φ[f(x)]=G(x,φ(x)), Ann. Polon. Math. 9 (1960), 275-284.

[003] [4] M. Kuczma, Functional Equations in a Single Variable, Monograf. Mat. 46, PWN, Warszawa, 1968.

[004] [5] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, 1990. | Zbl 0703.39005

[005] [6] M. Sablik, Differentiable solutions of functional equations in Banach spaces, Ann. Math. Sil. 7 (1993), 17-55. | Zbl 0805.39011

[006] [7] W. Smajdor, On continuous solutions of the Schröder equation, Ann. Polon. Math. 32 (1976), 111-118. | Zbl 0344.39004