On boundary-value problems for partial differential equations of order higher than two
Jan Popiołek
Annales Polonici Mathematici, Tome 66 (1997), p. 139-150 / Harvested from The Polish Digital Mathematics Library

We prove the existence of solutions of some boundary-value problems for partial differential equations of order higher than two. The general idea is similar to that in [1]. We make an essential use of the results of our paper [12].

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:270020
@article{bwmeta1.element.bwnjournal-article-apmv65z2p139bwm,
     author = {Jan Popio\l ek},
     title = {On boundary-value problems for partial differential equations of order higher than two},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {139-150},
     zbl = {0887.35034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p139bwm}
}
Jan Popiołek. On boundary-value problems for partial differential equations of order higher than two. Annales Polonici Mathematici, Tome 66 (1997) pp. 139-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p139bwm/

[000] [1] E. A. Baderko, On solvability of boundary-value problems for parabolic equations of higher order in curvilinear domains, Differentsial'nye Uravneniya 12 (1976), 1782-1792 (in Russian).

[001] [2] Z. D. Dubl'a, Boundary-value problems for differential equations in unbounded domains, Differentsial'nye Uravneniya 10 (1974), 159-161 (in Russian).

[002] [3] Z. D. Dubl'a, On the Dirichlet problem for a class of equations of third order, Differentsial'nye Uravneniya 13 (1977), 50-55 (in Russian).

[003] [4] T. D. Dzhuraev, Boundary-Value Problems for Equations of Mixed and Mixed-Composite Types, FAN, Tashkent, 1979 (in Russian).

[004] [5] T. D. Dzhuraev and M. Mamazhanov, On a class of boundary-value problems for equations of third order containing the operator of heat conduction, Izv. Akad. Nauk UzSSR 1985 (2), 22-26 (in Russian). | Zbl 0615.35058

[005] [6] M. Hanin, Propagation of an aperiodic wave in a compressible viscous medium, J. Math. Phys. 36 (1957), 133-150.

[006] [7] L. I. Kamynin, The method of heat potentials for parabolic equations with discontinuous coefficients, Sibirsk. Mat. Zh. 4 (1963), 1071-1105 (in Russian).

[007] [8] R. Nardini, Soluzione di un problema al contorno della magneto-idrodinamica, Ann. Mat. Pura Appl. 35 (1953), 269-290. | Zbl 0051.23801

[008] [9] R. Nardini, Sul comportamento asintotico della soluzione di un problema al contorno della magneto-idrodinamica, Rend. Accad. Naz. Lincei 16 (1954), 225-231, 341-348, 365-366. | Zbl 0058.42404

[009] [10] B. Pini, Un problema di valori al contorno per un'equazione a derivate parziali del terzo ordine con parte principale di tipo composito, Rend. Sem. Fac. Sci. Univ. Cagliari 27 (1957), 114-135. | Zbl 0083.32303

[010] [11] J. Popiołek, The Cauchy problem for a higher-order partial differential equation, Izv. Akad. Nauk UzSSR 1 (1989), 25-30 (in Russian).

[011] [12] J. Popiołek, Properties of some integrals related to partial differential equations of order higher than two, this issue, 129-138. | Zbl 0887.35033

[012] [13] A. S. Rustamov, A mixed problem for the equation of composite type with variable coefficients, Differentsial'nye Uravneniya 18 (1982), 1794-1804 (in Russian). | Zbl 0512.35060

[013] [14] S. N. Salikhov, On a boundary-value problem for a partial differential equation with multiple characteristics, Izv. Akad. Nauk UzSSR 1983 (5), 29-33 (in Russian). | Zbl 0566.35022

[014] [15] Ya. S. Sharifbaev, On some boundary-value problems for equations of third order with the heat conduction operator in the principal part, Izv. Akad. Nauk UzSSR 1975 (1), 45-48 (in Russian).

[015] [16] J. Urbanowicz, On a certain non-linear contact problem for a one-dimensional parabolic equation of second order, Demonstratio Math. 16 (1983), 61-83. | Zbl 0545.35047

[016] [17] S. S. Vojt, Propagation of initial waves in a viscous gas, Uchen. Zap. MTU 172 (1954), 125-142 (in Russian).