We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.
@article{bwmeta1.element.bwnjournal-article-apmv65z2p105bwm, author = {Wojciech Andrzejewski and Aleksy Tralle}, title = {Fat bundles and formality}, journal = {Annales Polonici Mathematici}, volume = {66}, year = {1997}, pages = {105-118}, zbl = {0873.53016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p105bwm} }
Wojciech Andrzejewski; Aleksy Tralle. Fat bundles and formality. Annales Polonici Mathematici, Tome 66 (1997) pp. 105-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p105bwm/
[000] [1] C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993.
[001] [2] L. Bérard-Bergery, Sur certaines fibrations d'espaces homogènes riemanniennes, Compositio Math. 30 (1975), 43-61. | Zbl 0304.53036
[002] [3] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011
[003] [4] A. Dumańska-Małyszko, Z. Stępień and A. Tralle, Generalized symmetric spaces and minimal models, Ann. Polon. Math. 64 (1996), 17-35.
[004] [5] V. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Academic Press, New York, 1976. | Zbl 0372.57001
[005] [6] S. Halperin, Lectures on Minimal Models, Hermann, Paris, 1982.
[006] [7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience Publ., New York, 1969. | Zbl 0175.48504
[007] [8] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).
[008] [9] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010
[009] [10] R. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961), 536-572. | Zbl 0114.38203
[010] [11] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. | Zbl 0446.55009
[011] [12] I. Vaisman, Symplectic Geometry and Secondary Characteristic Classes, Birkhäuser, Basel, 1988.
[012] [13] M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644. | Zbl 0361.53058
[013] [14] A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980), 239-250. | Zbl 0449.53035
[014] [15] P. B. Zwart and W. M. Boothby, On compact, homogeneous symplectic manifolds, Ann. Inst. Fourier (Grenoble) 30 (1) (1980), 129-157. | Zbl 0417.53028