Fat bundles and formality
Wojciech Andrzejewski ; Aleksy Tralle
Annales Polonici Mathematici, Tome 66 (1997), p. 105-118 / Harvested from The Polish Digital Mathematics Library

We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:269994
@article{bwmeta1.element.bwnjournal-article-apmv65z2p105bwm,
     author = {Wojciech Andrzejewski and Aleksy Tralle},
     title = {Fat bundles and formality},
     journal = {Annales Polonici Mathematici},
     volume = {66},
     year = {1997},
     pages = {105-118},
     zbl = {0873.53016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p105bwm}
}
Wojciech Andrzejewski; Aleksy Tralle. Fat bundles and formality. Annales Polonici Mathematici, Tome 66 (1997) pp. 105-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z2p105bwm/

[000] [1] C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993.

[001] [2] L. Bérard-Bergery, Sur certaines fibrations d'espaces homogènes riemanniennes, Compositio Math. 30 (1975), 43-61. | Zbl 0304.53036

[002] [3] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011

[003] [4] A. Dumańska-Małyszko, Z. Stępień and A. Tralle, Generalized symmetric spaces and minimal models, Ann. Polon. Math. 64 (1996), 17-35.

[004] [5] V. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Academic Press, New York, 1976. | Zbl 0372.57001

[005] [6] S. Halperin, Lectures on Minimal Models, Hermann, Paris, 1982.

[006] [7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience Publ., New York, 1969. | Zbl 0175.48504

[007] [8] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).

[008] [9] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010

[009] [10] R. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961), 536-572. | Zbl 0114.38203

[010] [11] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. | Zbl 0446.55009

[011] [12] I. Vaisman, Symplectic Geometry and Secondary Characteristic Classes, Birkhäuser, Basel, 1988.

[012] [13] M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644. | Zbl 0361.53058

[013] [14] A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980), 239-250. | Zbl 0449.53035

[014] [15] P. B. Zwart and W. M. Boothby, On compact, homogeneous symplectic manifolds, Ann. Inst. Fourier (Grenoble) 30 (1) (1980), 129-157. | Zbl 0417.53028