This paper presents a natural axiomatization of the real closed fields. It is universal and admits quantifier elimination.
@article{bwmeta1.element.bwnjournal-article-apmv65z1p95bwm, author = {Krzysztof Jan Nowak}, title = {On a universal axiomatization of the real closed fields}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {95-103}, zbl = {0874.03046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p95bwm} }
Krzysztof Jan Nowak. On a universal axiomatization of the real closed fields. Annales Polonici Mathematici, Tome 63 (1996) pp. 95-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p95bwm/
[000] [1] Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg 5 (1927), 85-99.
[001] [2] Bierstone, E., Milman, P. D.: Semianalytic and subanalytic sets, Publ. Math. I.H.E.S. 67 (1988), 1-42. | Zbl 0674.32002
[002] [3] Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle, Springer, 1987.
[003] [4] Chang, C. C., Keisler, H. J.: Model Theory, North-Holland, Amsterdam, 1973.
[004] [5] m Denkowska, Z., Łojasiewicz, S., Stasica, J.: Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. | Zbl 0435.32006
[005] [6] Keisler, H. J.: Fundamentals of model theory, in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 47-103.
[006] [7] Łoś, J.: On the extending of models I, Fund. Math. 42 (1955), 38-54. | Zbl 0065.00401
[007] [8] Prestel, A.: Lectures on Formally Real Fields, Lecture Notes in Math. 1093, Springer, 1984. | Zbl 0548.12011
[008] [9] Ribbenboim, P.: Théorie des Valuations, Les Presses de l'Université de Montréal, 1968.
[009] [10] Tarski, A.: The Completeness of Elementary Algebra and Geometry, Hermann, Paris, 1940.
[010] [11] Tarski, A.: Contributions to the theory of models I, II, Indag. Math. 16 (1954), 572-588. | Zbl 0058.24702