Let E be a Banach space. We consider a Cauchy problem of the type ⎧ in , ⎨ ⎩ in , j=0,...,k-1, where each is a given continuous linear operator from E into itself. We prove that if the operators are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions whose derivatives are equi-bounded on each bounded subset of .
@article{bwmeta1.element.bwnjournal-article-apmv65z1p67bwm, author = {Antonia Chinn\`\i\ and Paolo Cubiotti}, title = {Partial differential equations in Banach spaces involving nilpotent linear operators}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {67-80}, zbl = {0869.35109}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p67bwm} }
Antonia Chinnì; Paolo Cubiotti. Partial differential equations in Banach spaces involving nilpotent linear operators. Annales Polonici Mathematici, Tome 63 (1996) pp. 67-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p67bwm/
[000] [1] L. Cattabriga, On the surjectivity of differential polynomials on Gevrey spaces, Rend. Sem. Mat. Univ. Politec. Torino (1983), special issue on ``Linear partial and pseudodifferential operators'', 81-89. | Zbl 0561.35008
[001] [2] L. Cattabriga and E. De Giorgi, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital. (4) 4 (1971), 1015-1027.
[002] [3] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-56), 271-355.
[003] [4] B. Ricceri, On the well-posedness of the Cauchy problem for a class of linear partial differential equations of infinite order in Banach spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), 623-640. | Zbl 0810.35169
[004] [5] F. Trèves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, 1966. | Zbl 0164.40602