Polynomial set-valued functions
Joanna Szczawińska
Annales Polonici Mathematici, Tome 63 (1996), p. 55-65 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270019
@article{bwmeta1.element.bwnjournal-article-apmv65z1p55bwm,
     author = {Joanna Szczawi\'nska},
     title = {Polynomial set-valued functions},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {55-65},
     zbl = {0877.54016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p55bwm}
}
Joanna Szczawińska. Polynomial set-valued functions. Annales Polonici Mathematici, Tome 63 (1996) pp. 55-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p55bwm/

[000] [1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. | Zbl 0346.46038

[001] [2] R. Ger, On extensions of polynomial functions, Results Math. 26 (1994), 281-289. | Zbl 0829.39006

[002] [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śl., Warszawa-Kraków-Katowice, 1985.

[003] [4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politech. Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.

[004] [5] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.

[005] [6] H. Rådström, One-parameter semigroups of subsets of a real linear space, Ark. Mat. 4 (1960), 87-97. | Zbl 0093.30401

[006] [7] A. Smajdor, On a functional equation, Ann. Math. Sil. 8 (1994), 217-226. | Zbl 0822.39006