The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.
@article{bwmeta1.element.bwnjournal-article-apmv65z1p55bwm, author = {Joanna Szczawi\'nska}, title = {Polynomial set-valued functions}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {55-65}, zbl = {0877.54016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p55bwm} }
Joanna Szczawińska. Polynomial set-valued functions. Annales Polonici Mathematici, Tome 63 (1996) pp. 55-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p55bwm/
[000] [1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. | Zbl 0346.46038
[001] [2] R. Ger, On extensions of polynomial functions, Results Math. 26 (1994), 281-289. | Zbl 0829.39006
[002] [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śl., Warszawa-Kraków-Katowice, 1985.
[003] [4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politech. Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.
[004] [5] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[005] [6] H. Rådström, One-parameter semigroups of subsets of a real linear space, Ark. Mat. 4 (1960), 87-97. | Zbl 0093.30401
[006] [7] A. Smajdor, On a functional equation, Ann. Math. Sil. 8 (1994), 217-226. | Zbl 0822.39006