We derive a global differential inequality for solutions of a free boundary problem for a viscous compressible heat concluding capillary fluid. The inequality is essential in proving the global existence of solutions.
@article{bwmeta1.element.bwnjournal-article-apmv65z1p23bwm, author = {Ewa Zadrzy\'nska and Wojciech M. Zaj\k aczkowski}, title = {On a differential inequality for a viscous compressible heat conducting capillary fluid bounded by a free surface}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {23-53}, zbl = {0885.35101}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p23bwm} }
Ewa Zadrzyńska; Wojciech M. Zajączkowski. On a differential inequality for a viscous compressible heat conducting capillary fluid bounded by a free surface. Annales Polonici Mathematici, Tome 63 (1996) pp. 23-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv65z1p23bwm/
[000] [1] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian).
[001] [2] L. Landau and E. Lifschitz, Mechanics of Continuum Media, Nauka, Moscow, 1984; new edition: Hydrodynamics, Nauka, Moscow, 1986 (in Russian).
[002] [3] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104. | Zbl 0429.76040
[003] [4] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A 55 (1979), 337-342. | Zbl 0447.76053
[004] [5] A. Matsumura and T. Nishida, The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid, preprint Univ. of Wisconsin, MRC Technical Summary Report 2237 (1981). | Zbl 0543.76099
[005] [6] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in: Computing Methods in Applied Sciences and Engineering, R. Glowinski and J. L. Lions (eds.), North-Holland, Amsterdam, 1982, 389-406. | Zbl 0505.76083
[006] [7] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464. | Zbl 0543.76099
[007] [8] K. Pileckas and W. M. Zajączkowski, On free boundary problem for stationary compressible Navier-Stokes equations, Comm. Math. Phys. 128 (1990), 1-36.
[008] [9] V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid, preprint of Paderborn University. | Zbl 0786.35106
[009] [10] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa (4) 10 (1983), 607-647. | Zbl 0542.35062
[010] [11] A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys. 103 (1986), 259-296. | Zbl 0611.76082
[011] [12] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscous heat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170. | Zbl 0812.35102
[012] [13] E. Zadrzyńska and W. M. Zajączkowski, On global motion of a compressible heat conducting fluid bounded by a free surface, Acta Appl. Math. 37 (1994), 221-231. | Zbl 0813.35130
[013] [14] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting fluids, Bull. Polish Acad. Sci. Tech. Sci. 42 (1994), 195-205. | Zbl 0814.76075
[014] [15] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting capillary fluids, Bull. Polish Acad. Sci. Tech. Sci. 43 (1995), 423-444. | Zbl 0880.76065
[015] [16] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for a viscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math. 61 (1995), 141-188. | Zbl 0833.35156
[016] [17] E. Zadrzyńska and W. M. Zajączkowski, On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid, Ann. Polon. Math. 63 (1996), 199-221. | Zbl 0862.35147
[017] [18] W. M. Zajączkowski, On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface, Dissertationes Math. 324 (1993). | Zbl 0771.76059
[018] [19] W. M. Zajączkowski, On Nonstationary Motion of A Compressible Barotropic Viscous Capillary Fluid Bounded By A Free Surface, Siam J. Math. Anal. 25 (1994), 1-84. | Zbl 0813.35086