On the first secondary invariant of Molino's central sheaf
Jesús A. Álvarez López
Annales Polonici Mathematici, Tome 63 (1996), p. 253-265 / Harvested from The Polish Digital Mathematics Library

For a Riemannian foliation on a closed manifold, the first secondary invariant of Molino's central sheaf is an obstruction to tautness. Another obstruction is the class defined by the basic component of the mean curvature with respect to some metric. Both obstructions are proved to be the same up to a constant, and other geometric properties are also proved to be equivalent to tautness.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:269961
@article{bwmeta1.element.bwnjournal-article-apmv64z3p253bwm,
     author = {Jes\'us A. \'Alvarez L\'opez},
     title = {On the first secondary invariant of Molino's central sheaf},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {253-265},
     zbl = {0863.53021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p253bwm}
}
Jesús A. Álvarez López. On the first secondary invariant of Molino's central sheaf. Annales Polonici Mathematici, Tome 63 (1996) pp. 253-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p253bwm/

[000] [1] J. A. Álvarez López, A finiteness theorem for the spectral sequence of a Riemannian foliation, Illinois J. Math. 33 (1989), 79-92. | Zbl 0644.57014

[001] [2] J. A. Álvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194. | Zbl 0759.57017

[002] [3] J. A. Álvarez López, Morse inequalities for pseudogroups of local isometries, J. Differential Geom. 37 (1993), 603-638. | Zbl 0783.53023

[003] [4] Y. Carrière, Flots riemanniens, Astérisque 116 (1984), 31-52.

[004] [5] D. Domínguez, Finiteness and tenseness theorems for Riemannian foliations, preprint, 1994.

[005] [6] A. El Kacimi-Alaoui et G. Hector, Décomposition de Hodge sur l'espace des feuilles d'un feuilletage riemannien, C. R. Acad. Sci. Paris 298 (1984), 289-292. | Zbl 0569.57015

[006] [7] A. El Kacimi-Alaoui, G. Hector et V. Sergiescu, La cohomologie basique d'un feuilletage Riemannien est de dimension finie, Math. Z. 188 (1985), 593-599. | Zbl 0536.57013

[007] [8] A. El Kacimi-Alaoui and M. Nicolau, On the topological invariance of the basic cohomology, Math. Ann. 293 (1993), 627-634. | Zbl 0793.57016

[008] [9] A. Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geom. 15 (1980), 269-384. | Zbl 0444.57016

[009] [10] A. Haefliger, Pseudogroups of local isometries, in: Differential Geometry, Proc. Conf. Santiago de Compostela 1984, L. A. Cordero (ed.), Pitman, 1984, 174-197.

[010] [11] A. Haefliger, Leaf Closures in Riemannian Foliations, in: A Fête on Topology, Academic Press, New York, 1988, 3-32.

[011] [12] F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Lecture Notes in Math. 494, Springer, 1975. | Zbl 0308.57011

[012] [13] F. Kamber and P. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), 415-431. | Zbl 0637.53043

[013] [14] E. Macías and E. Sanmartín, Minimal foliations on Lie groups, Indag. Math. 3 (1992), 41-46. | Zbl 0766.53021

[014] [15] X. Masa, Duality and minimality in Riemannian foliations, Comment. Math. Helv. 67 (1992), 17-27. | Zbl 0778.53029

[015] [16] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Proc. A1 85 (1982), 45-76. | Zbl 0516.57016

[016] [17] P. Molino, Riemannian Foliations, Progr. Math. 73, Birkhäuser, Boston, 1988.

[017] [18] P. Molino et V. Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), 145-161. | Zbl 0585.53026

[018] [19] B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132. | Zbl 0122.16604

[019] [20] H. Rummler, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Comment. Math. Helv. 54 (1979), 224-239. | Zbl 0409.57026

[020] [21] E. Salem, Riemannian foliations and pseudogroups of isometries, in: Riemannian Foliations, Progr. Math. 73, Birkhäuser, Boston, 1988.

[021] [22] V. Sergiescu, Cohomologie basique et dualité des feuilletages riemanniens, Ann. Inst. Fourier (Grenoble) 35 (1985), 137-158. | Zbl 0563.57012

[022] [23] A. Verona, A de Rham type theorem, Proc. Amer. Math. Soc. 104 (1988), 300-302. | Zbl 0667.57021