On the increasing solutions of the translation equation
Janusz Brzdęk
Annales Polonici Mathematici, Tome 63 (1996), p. 207-214 / Harvested from The Polish Digital Mathematics Library

Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form F(a,x)=f-1(f(a)+c(x)) for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270001
@article{bwmeta1.element.bwnjournal-article-apmv64z3p207bwm,
     author = {Janusz Brzd\k ek},
     title = {On the increasing solutions of the translation equation},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {207-214},
     zbl = {0860.39035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p207bwm}
}
Janusz Brzdęk. On the increasing solutions of the translation equation. Annales Polonici Mathematici, Tome 63 (1996) pp. 207-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p207bwm/

[000] [1] U. Abel, Sur les groupes d'itération monotones, Publ. Math. Debrecen 29 (1982), 65-71. | Zbl 0505.39005

[001] [2] J. Aczél, L. Kalmár et J. G. Mikusiński, Sur l'équation de translation, Studia Math. 12 (1951), 112-116. | Zbl 0042.34401

[002] [3] A. Grzegorczyk and J. Tabor, Monotonic solutions of the translation equation, Ann. Polon. Math. 43 (1983), 253-260. | Zbl 0537.39008

[003] [4] J. Tabor, Characterization of mixed iteration groups, to appear. | Zbl 1167.26003