Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation , then it is continuous or the set x ∈ X : f(x) ≠ 0 is a Christensen zero set.
@article{bwmeta1.element.bwnjournal-article-apmv64z3p195bwm, author = {Janusz Brzd\k ek}, title = {The Christensen measurable solutions of a generalization of the Go\l \k ab-Schinzel functional equation}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {195-205}, zbl = {0860.39034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p195bwm} }
Janusz Brzdęk. The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation. Annales Polonici Mathematici, Tome 63 (1996) pp. 195-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p195bwm/
[000] [1] J. Aczél and S. Gołąb, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10. | Zbl 0205.14802
[001] [2] K. Baron, On the continuous solutions of the Gołąb-Schinzel equation, Aequationes Math. 38 (1989), 155-162. | Zbl 0702.39005
[002] [3] W. Benz, The cardinality of the set of discontinuous solutions of a class of functional equations, Aequationes Math. 32 (1987), 58-62. | Zbl 0616.39003
[003] [4] N. Brillouët et J. Dhombres, Equations fonctionnelles et recherche de sous groupes, Aequationes Math. 31 (1986), 253-293. | Zbl 0611.39004
[004] [5] J. Brzdęk, Subgroups of the group and a generalization of the Gołąb-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71. | Zbl 0757.39003
[005] [6] J. Brzdęk, A generalization of the Gołąb-Schinzel functional equation, Aequationes Math. 39 (1990), 268-269.
[006] [7] J. Brzdęk, On the solutions of the functional equation , Publ. Math. Debrecen 38 (1991), 175-183. | Zbl 0741.39008
[007] [8] J. P. R. Christensen, Topology and Borel Structure, North-Holland Math. Stud. 10, North-Holland, 1974.
[008] [9] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260.
[009] [10] P. Fischer and Z. Słodkowski, Christensen zero sets and measurable convex functions, Proc. Amer. Math. Soc. 79 (1980), 449-453. | Zbl 0444.46010
[010] [11] S. Gołąb et A. Schinzel, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Publ. Math. Debrecen 6 (1959), 113-125. | Zbl 0083.35004
[011] [12] D. Ilse, I. Lechmann und W. Schulz, Gruppoide und Funktionalgleichungen, Deutscher Verlag Wiss., Berlin, 1984.
[012] [13] P. Javor, On the general solution of the functional equation f(x+yf(x)) = f(x)f(y), Aequationes Math. 1 (1968), 235-238. | Zbl 0165.17102
[013] [14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śląski, Warszawa-Kraków-Katowice, 1985.
[014] [15] P. Plaumann und S. Strambach, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249-264. | Zbl 0375.17012
[015] [16] C. G. Popa, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Ann. Polon. Math. 17 (1965), 193-198. | Zbl 0141.32804
[016] [17] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974.
[017] [18] M. Sablik and P. Urban, On the solutions of the equation , Demonstratio Math. 18 (1985), 863-867. | Zbl 0599.39006
[018] [19] S. Wołodźko, Solution générale de l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Aequationes Math. 2 (1968), 12-29. | Zbl 0162.20402