The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation
Janusz Brzdęk
Annales Polonici Mathematici, Tome 63 (1996), p. 195-205 / Harvested from The Polish Digital Mathematics Library

Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation f(x+f(x)ny)=f(x)f(y), then it is continuous or the set x ∈ X : f(x) ≠ 0 is a Christensen zero set.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:269942
@article{bwmeta1.element.bwnjournal-article-apmv64z3p195bwm,
     author = {Janusz Brzd\k ek},
     title = {The Christensen measurable solutions of a generalization of the Go\l \k ab-Schinzel functional equation},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {195-205},
     zbl = {0860.39034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p195bwm}
}
Janusz Brzdęk. The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation. Annales Polonici Mathematici, Tome 63 (1996) pp. 195-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z3p195bwm/

[000] [1] J. Aczél and S. Gołąb, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10. | Zbl 0205.14802

[001] [2] K. Baron, On the continuous solutions of the Gołąb-Schinzel equation, Aequationes Math. 38 (1989), 155-162. | Zbl 0702.39005

[002] [3] W. Benz, The cardinality of the set of discontinuous solutions of a class of functional equations, Aequationes Math. 32 (1987), 58-62. | Zbl 0616.39003

[003] [4] N. Brillouët et J. Dhombres, Equations fonctionnelles et recherche de sous groupes, Aequationes Math. 31 (1986), 253-293. | Zbl 0611.39004

[004] [5] J. Brzdęk, Subgroups of the group Zn and a generalization of the Gołąb-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71. | Zbl 0757.39003

[005] [6] J. Brzdęk, A generalization of the Gołąb-Schinzel functional equation, Aequationes Math. 39 (1990), 268-269.

[006] [7] J. Brzdęk, On the solutions of the functional equation f(xf(y)l+yf(x)k)=tf(x)f(y), Publ. Math. Debrecen 38 (1991), 175-183. | Zbl 0741.39008

[007] [8] J. P. R. Christensen, Topology and Borel Structure, North-Holland Math. Stud. 10, North-Holland, 1974.

[008] [9] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math. 13 (1972), 255-260.

[009] [10] P. Fischer and Z. Słodkowski, Christensen zero sets and measurable convex functions, Proc. Amer. Math. Soc. 79 (1980), 449-453. | Zbl 0444.46010

[010] [11] S. Gołąb et A. Schinzel, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Publ. Math. Debrecen 6 (1959), 113-125. | Zbl 0083.35004

[011] [12] D. Ilse, I. Lechmann und W. Schulz, Gruppoide und Funktionalgleichungen, Deutscher Verlag Wiss., Berlin, 1984.

[012] [13] P. Javor, On the general solution of the functional equation f(x+yf(x)) = f(x)f(y), Aequationes Math. 1 (1968), 235-238. | Zbl 0165.17102

[013] [14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śląski, Warszawa-Kraków-Katowice, 1985.

[014] [15] P. Plaumann und S. Strambach, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249-264. | Zbl 0375.17012

[015] [16] C. G. Popa, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Ann. Polon. Math. 17 (1965), 193-198. | Zbl 0141.32804

[016] [17] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1974.

[017] [18] M. Sablik and P. Urban, On the solutions of the equation f(xf(y)k+yf(x)l)=f(x)f(y), Demonstratio Math. 18 (1985), 863-867. | Zbl 0599.39006

[018] [19] S. Wołodźko, Solution générale de l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Aequationes Math. 2 (1968), 12-29. | Zbl 0162.20402