The existence of solutions to a Volterra integral equation
Wojciech Mydlarczyk
Annales Polonici Mathematici, Tome 63 (1996), p. 175-182 / Harvested from The Polish Digital Mathematics Library

We study the equation u = k∗g(u) with k such that ln k is convex or concave and g is monotonic. Some necessary and sufficient conditions for the existence of nontrivial continuous solutions u of this equation are given.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:269967
@article{bwmeta1.element.bwnjournal-article-apmv64z2p175bwm,
     author = {Wojciech Mydlarczyk},
     title = {The existence of solutions to a Volterra integral equation},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {175-182},
     zbl = {0863.45002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p175bwm}
}
Wojciech Mydlarczyk. The existence of solutions to a Volterra integral equation. Annales Polonici Mathematici, Tome 63 (1996) pp. 175-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p175bwm/

[000] [1] G. Gripenberg, On the uniqueness of solutions of Volterra equations, J. Integral Equations Appl. 2 (1990), 421-430. | Zbl 0826.45002

[001] [2] R. K. Miller, Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, Calif., 1971.

[002] [3] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88. | Zbl 0701.45002

[003] [4] W. Mydlarczyk, Remarks on a nonlinear Volterra equation, Ann. Polon. Math. 53 (1991), 227-232. | Zbl 0724.45005

[004] [5] W. Okrasiński, Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 4 (1991), 1007-1015. | Zbl 0735.45005

[005] [6] W. Okrasiński, On a nonlinear Volterra integral equation, Math. Methods Appl. Sci. 8 (1986), 345-350. | Zbl 0603.45008