We study the equation u = k∗g(u) with k such that ln k is convex or concave and g is monotonic. Some necessary and sufficient conditions for the existence of nontrivial continuous solutions u of this equation are given.
@article{bwmeta1.element.bwnjournal-article-apmv64z2p175bwm, author = {Wojciech Mydlarczyk}, title = {The existence of solutions to a Volterra integral equation}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {175-182}, zbl = {0863.45002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p175bwm} }
Wojciech Mydlarczyk. The existence of solutions to a Volterra integral equation. Annales Polonici Mathematici, Tome 63 (1996) pp. 175-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p175bwm/
[000] [1] G. Gripenberg, On the uniqueness of solutions of Volterra equations, J. Integral Equations Appl. 2 (1990), 421-430. | Zbl 0826.45002
[001] [2] R. K. Miller, Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, Calif., 1971.
[002] [3] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88. | Zbl 0701.45002
[003] [4] W. Mydlarczyk, Remarks on a nonlinear Volterra equation, Ann. Polon. Math. 53 (1991), 227-232. | Zbl 0724.45005
[004] [5] W. Okrasiński, Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 4 (1991), 1007-1015. | Zbl 0735.45005
[005] [6] W. Okrasiński, On a nonlinear Volterra integral equation, Math. Methods Appl. Sci. 8 (1986), 345-350. | Zbl 0603.45008