Defining complete and observable chaos
Víctor Jiménez López
Annales Polonici Mathematici, Tome 63 (1996), p. 139-151 / Harvested from The Polish Digital Mathematics Library

For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which liminfn|fn(x)-fn(y)|=0 and limsupn|fn(x)-fn(y)|>0. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of “complete” and “observable” chaos.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:269968
@article{bwmeta1.element.bwnjournal-article-apmv64z2p139bwm,
     author = {V\'\i ctor Jim\'enez L\'opez},
     title = {Defining complete and observable chaos},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {139-151},
     zbl = {0867.58045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p139bwm}
}
Víctor Jiménez López. Defining complete and observable chaos. Annales Polonici Mathematici, Tome 63 (1996) pp. 139-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p139bwm/

[000] [AJS] L. Alsedà, V. Jiménez López and L'. Snoha, On 1-difactors of Markov graphs and the prevalence of simple solenoids, preprint, 1995.

[001] [BJ] F. Balibrea and V. Jiménez López, A structure theorem for C² functions verifying the Misiurewicz condition, in: Proceedings of the European Conference on Iteration Theory (ECIT 91), Lisbon, 1991, World Sci., Singapore, 1992, 12-21.

[002] [BH] A. M. Bruckner and T. Hu, On scrambled sets and chaotic functions, Trans. Amer. Math. Soc. 301 (1987), 289-297. | Zbl 0639.26004

[003] [BKNS] H. Bruin, G. Keller, T. Nowicki and S. van Strien, Absorbing Cantor sets in dynamical systems: Fibonacci maps, preprint Stony Brook 1994/2.

[004] [CE] P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progr. Phys. 1, Birkhäuser, Boston, 1980. | Zbl 0458.58002

[005] [Ge1] T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc. 36 (1987), 411-416. | Zbl 0646.26008

[006] [Ge2] T. Gedeon, Generic chaos can be large, Acta Math. Univ. Comenian. 54/55 (1988), 237-241. | Zbl 0725.26006

[007] [Gu] J. Guckenheimer, Sensitive dependence on initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), 133-160. | Zbl 0429.58012

[008] [JaS] K. Janková and J. Smítal, A characterization of chaos, Bull. Austral. Math. Soc. 34 (1986), 283-292. | Zbl 0577.54041

[009] [Ji1] V. Jiménez López, C¹ weakly chaotic functions with zero topological entropy and non-flat critical points, Acta Math. Univ. Comenian. 60 (1991), 195-209. | Zbl 0748.58019

[010] [Ji2] V. Jiménez López, Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc. 46 (1992), 271-285. | Zbl 0758.26004

[011] [Ji3] V. Jiménez López, Paradoxical functions on the interval, Proc. Amer. Math. Soc. 120 (1994), 465-473. | Zbl 0832.58025

[012] [Ji4] V. Jiménez López, Order and chaos for a class of piecewise linear maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1379-1394. | Zbl 0886.58029

[013] [JiS] V. Jiménez López and L’. Snoha, There are no piecewise linear maps of type 2, preprint, 1994.

[014] [Ka] I. Kan, A chaotic function possessing a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 45-49. | Zbl 0592.26005

[015] [Ku] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.

[016] [LY] T.-Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. | Zbl 0351.92021

[017] [Li] G.-F. Liao, A note on generic chaos, Ann. Polon. Math. 59 (1994), 99-105. | Zbl 0810.54032

[018] [MT] M. Martens and C. Tresser, Forcing of periodic orbits and renormalization of piecewise affine maps, preprint Stony Brook 1994/17.

[019] [Mi] M. Misiurewicz, Chaos almost everywhere, in: Iteration Theory and its Functional Equations, Lecture Notes in Math. 1163, Springer, Berlin, 1985, 125-130.

[020] [Pi1] J. Piórek, On the generic chaos in dynamical systems, Univ. Iagell. Acta Math. 25 (1985), 293-298. | Zbl 0587.54061

[021] [Pi2] J. Piórek, On generic chaos of shifts in function spaces, Ann. Polon. Math. 52 (1990), 139-146. | Zbl 0719.58005

[022] [Pi3] J. Piórek, On weakly mixing and generic chaos, Univ. Iagell. Acta Math. 28 (1991), 245-250. | Zbl 0746.58059

[023] [Sm1] J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc. 87 (1983), 54-56. | Zbl 0555.26003

[024] [Sm2] J. Smítal, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc. 92 (1984), 50-54. | Zbl 0592.26006

[025] [Sm3] J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. | Zbl 0639.54029

[026] [Sn1] L'. Snoha, Generic chaos, Comment. Math. Univ. Carolin. 31 (1990), 793-810.

[027] [Sn2] L'. Snoha, Dense chaos, Comment. Math. Univ. Carolin. 33 (1992), 747-752. | Zbl 0784.58043

[028] [Sn3] L'. Snoha, Two-parameter chaos, Acta Univ. M. Belii 1 (1993), 3-6.