A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
@article{bwmeta1.element.bwnjournal-article-apmv64z2p131bwm, author = {Anna A. Kwieci\'nska}, title = {On the C0-closing lemma}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {131-138}, zbl = {0863.58058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p131bwm} }
Anna A. Kwiecińska. On the C⁰-closing lemma. Annales Polonici Mathematici, Tome 63 (1996) pp. 131-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p131bwm/
[000] [1] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[001] [2] H. Lehning, Dynamics of typical continuous functions, preprint, 1993. | Zbl 0843.58077
[002] [3] Z. Nitecki and M. Shub, Filtrations, decompositions and explosions, Amer. J. Math. 97 (1975), 1029-1047. | Zbl 0324.58015
[003] [4] C. C. Pugh, Improved closing lemma, Amer. J. Math. 89 (1967), 1010-1021. | Zbl 0167.21804
[004] [5] W. Szlenk, Introduction to the Theory of Smooth Dynamical Systems, Polish Sci. Publ., Warszawa, 1984.