A topological version of the Ambrosetti-Prodi theorem
Bogdan Przeradzki
Annales Polonici Mathematici, Tome 63 (1996), p. 121-130 / Harvested from The Polish Digital Mathematics Library

The existence of at least two solutions for nonlinear equations close to semilinear equations at resonance is obtained by the degree theory methods. The same equations have no solutions if one slightly changes the right-hand side. The abstract result is applied to boundary value problems with specific nonlinearities.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270028
@article{bwmeta1.element.bwnjournal-article-apmv64z2p121bwm,
     author = {Bogdan Przeradzki},
     title = {A topological version of the Ambrosetti-Prodi theorem},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {121-130},
     zbl = {0860.47047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p121bwm}
}
Bogdan Przeradzki. A topological version of the Ambrosetti-Prodi theorem. Annales Polonici Mathematici, Tome 63 (1996) pp. 121-130. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z2p121bwm/

[000] [1] H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh 84A (1979), 145-151. | Zbl 0416.35029

[001] [2] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1973), 231-247. | Zbl 0288.35020

[002] [3] C. Fabry, J. Mawhin and M. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order differential equations, Bull. London Math. Soc. 18 (1986), 173-180. | Zbl 0586.34038

[003] [4] A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-284. | Zbl 0496.35039

[004] [5] A. C. Lazer and P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh 95A (1983), 275-283. | Zbl 0533.35037

[005] [6] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conf. Ser. in Math. 40, Amer. Math. Soc., Providence, R.I., 1977.

[006] [7] B. Przeradzki, An abstract version of the resonance theorem, Ann. Polon Math. 53 (1991), 35-43. | Zbl 0746.47043

[007] [8] B. Przeradzki, A new continuation method for the study of nonlinear equations at resonance, J. Math. Anal. Appl. 180 (1993), 553-565. | Zbl 0807.34029

[008] [9] B. Przeradzki, Nonlinear boundary value problems at resonance for differential equations in Banach spaces, Math. Slovaca, to appear. | Zbl 0836.34065

[009] [10] B. Przeradzki, Three methods for the study of semilinear equations at resonance, Colloq. Math. 66 (1993), 109-129. | Zbl 0828.47054

[010] [11] B. Ruf, Multiplicity results for nonlinear elliptic equations, in: Proc. of the Spring School, Litomyšl, 1986, Teubner-Texte zur Math. 93, 1986, 109-138. | Zbl 0633.35027

[011] [12] S. Solimini, Multiplicity results for a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh 96A (1984), 331-336. | Zbl 0557.35052