Growth properties of entire functions depending on a parameter
Stefan Halvarsson
Annales Polonici Mathematici, Tome 63 (1996), p. 71-96 / Harvested from The Polish Digital Mathematics Library

We study the growth of parameter-dependent entire functions. We are mainly interested in the case where the functions depend holomorphically on the parameter.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:270029
@article{bwmeta1.element.bwnjournal-article-apmv64z1p71bwm,
     author = {Stefan Halvarsson},
     title = {Growth properties of entire functions depending on a parameter},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {71-96},
     zbl = {0917.32001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z1p71bwm}
}
Stefan Halvarsson. Growth properties of entire functions depending on a parameter. Annales Polonici Mathematici, Tome 63 (1996) pp. 71-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z1p71bwm/

[000] [1] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-44. | Zbl 0547.32012

[001] [2] H. J. Bremermann, On the conjecture of the equivalence of the plurisubharmonic functions and the Hartogs functions, Math. Ann. 131 (1956), 76-86. | Zbl 0070.07603

[002] [3] S. Halvarsson, Extension of entire functions with controlled growth, Math. Scand. 74 (1994), 73-97. | Zbl 0813.32001

[003] [4] S. Halvarsson, A geometric interpretation of the relative order between entire functions, Arch. Math. (Basel), to appear. | Zbl 0859.32001

[004] [5] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function, J. Reine Angew. Math. 282 (1976), 53-67. | Zbl 0321.30031

[005] [6] O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-type and lower (p,q)-type of an entire function, J. Reine Angew. Math. 290 (1977), 180-190. | Zbl 0501.30021

[006] [7] C. O. Kiselman, The use of conjugate convex functions in complex analysis, in: Complex Analysis, J. Ławrynowicz and J. Siciak (eds.), Banach Center Publ. 11, PWN, Warszawa, 1983, 131-142. | Zbl 0585.32019

[007] [8] C. O. Kiselman, Order and type as measures of growth for convex or entire functions, Proc. London Math. Soc. (3) 66 (1993), 152-186. | Zbl 0798.32001

[008] [9] S. G. Krantz, Function Theory of Several Complex Variables, Wiley-Interscience, 1982. | Zbl 0471.32008

[009] [10] P. Lelong, Fonctionnelles analytiques et fonctions entières (n variables), Cours d'été de Montréal 1967, Les Presses de l'Université de Montréal, 1968.

[010] [11] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, 1968.

[011] [12] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0193.18401

[012] [13] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. | Zbl 0925.00005

[013] [14] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (4) (1981), 61-119. | Zbl 0494.31005

[014] [15] D. Sato, On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69 (1963), 411-414. | Zbl 0109.30104