The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter in the “hyperbolic” case.
@article{bwmeta1.element.bwnjournal-article-apmv64z1p47bwm, author = {Jan Bochenek and Teresa Winiarska}, title = {Evolution equations with parameter in the hyperbolic case}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {47-60}, zbl = {0855.34070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z1p47bwm} }
Jan Bochenek; Teresa Winiarska. Evolution equations with parameter in the hyperbolic case. Annales Polonici Mathematici, Tome 63 (1996) pp. 47-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z1p47bwm/
[000] [1] T. Kato, Perturbation Theory for Linear Operators, Springer, 1980. | Zbl 0435.47001
[001] [2] S. G. Krein, Linear Differential Equations in Banach Space, Transl. Amer. Math. Soc. 29, Providence, R.I., 1971.
[002] [3] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
[003] [4] H. Tanabe, Equations of Evolution, Pitman, 1979.
[004] [5] T. Winiarska, Parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 51 (1990), 325-339. | Zbl 0738.35020
[005] [6] T. Winiarska, Regularity of solutions of parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 56 (1992), 311-317. | Zbl 0763.35015