We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.
@article{bwmeta1.element.bwnjournal-article-apmv64z1p17bwm, author = {Anna Duma\'nska-Ma\l yszko and Zofia St\k epie\'n and Aleksy Tralle}, title = {Generalized symmetric spaces and minimal models}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {17-35}, zbl = {0856.53041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv64z1p17bwm} }
Anna Dumańska-Małyszko; Zofia Stępień; Aleksy Tralle. Generalized symmetric spaces and minimal models. Annales Polonici Mathematici, Tome 63 (1996) pp. 17-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv64z1p17bwm/
[000] [1] C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993.
[001] [2] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl 0312.55011
[002] [3] L. Flatto, Invariants of reflection groups, Enseign. Math. 28 (1978), 237-293. | Zbl 0401.20041
[003] [4] A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369. | Zbl 0275.53026
[004] [5] V. Greub, S. Halperin and R. Vanstone, Curvature, Connections and Cohomology, Vol. 3, Acad. Press, 1976. | Zbl 0372.57001
[005] [6] S. Halperin, Lectures on Minimal Models, Hermann, 1982.
[006] [7] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Press, 1978.
[007] [8] J. A. Jiménez, Riemannian 4-symmetric spaces, Trans. Amer. Math. Soc. 306 (1988), 715-734. | Zbl 0647.53039
[008] [9] O. Kowalski, Classification of generalized Riemannian symmetric spaces of dimension ≤ 5, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd 85 (1975).
[009] [10] O. Kowalski, Generalized Symmetric Spaces, Springer, 1980. | Zbl 0431.53042
[010] [11] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985. | Zbl 0563.13001
[011] [12] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).
[012] [13] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. | Zbl 0789.55010
[013] [14] T. Miller and J. Neisendorfer, Formal and coformal spaces, Illinois J. Math. 22 (1978), 565-580. | Zbl 0396.55011
[014] [15] D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1977), 269-331. | Zbl 0374.57002
[015] [16] M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1962), 313-328. | Zbl 0108.35802
[016] [17] D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer, 1988.
[017] [18] J.-C. Thomas, Homotopie rationnelle des fibrés de Serre, Ph.D. Thesis, Université des Sciences et Techniques de Lille 1, 1980.
[018] [19] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. | Zbl 0446.55009
[019] [20] M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644. | Zbl 0361.53058
[020] [21] R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, 1973. | Zbl 0262.32005