Some general representation formulae for (C₀) m-parameter operator semigroups with rates of convergence are obtained by the probabilistic approach and multiplier enlargement method. These cover all known representation formulae for (C₀) one- and m-parameter operator semigroups as special cases. When we consider special semigroups we recover well-known convergence theorems for multivariate approximation operators.
@article{bwmeta1.element.bwnjournal-article-apmv63z3p247bwm, author = {Mi Zhou and George A. Anastassiou}, title = {Representation formulae for (C0) m-parameter operator semigroups}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {247-272}, zbl = {0862.47019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z3p247bwm} }
Mi Zhou; George A. Anastassiou. Representation formulae for (C₀) m-parameter operator semigroups. Annales Polonici Mathematici, Tome 63 (1996) pp. 247-272. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z3p247bwm/
[000] [1] P. L. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer, New York, 1967. | Zbl 0164.43702
[001] [2] P. L. Butzer and L. Hahn, A probabilistic approach to representation formulae for semigroups of operators with rates of convergence, Semigroup Forum 21 (1980), 257-272. | Zbl 0452.60009
[002] [3] W. Z. Chen and M. Zhou, Freud-Butzer-Hahn type quantitative theorem for probabilistic representations of (C₀) operator semigroups, Approx. Theory Appl. 9 (1993), 1-8. | Zbl 0784.41015
[003] [4] K. L. Chung, On the exponential formulas of semi-group theory, Math. Scand. 10 (1962), 153-162. | Zbl 0106.31201
[004] [5] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York and London, 1969. | Zbl 0176.00502
[005] [6] S. Eisenberg and B. Wood, Approximating unbounded functions with linear operators generated by moment sequences, Studia Math. 35 (1970), 299-304. | Zbl 0199.11601
[006] [7] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, Wiley, New York, 1968. | Zbl 0155.23101
[007] [8] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R.I., 1957. | Zbl 0078.10004
[008] [9] L. C. Hsu, Approximation of non-bounded continuous functions by certain sequences of linear positive operators of polynomials, Studia Math. 21 (1961), 37-43. | Zbl 0102.05003
[009] [10] J. Kisyński, Semi-groups of operators and some of their applications to partial differential equations, in: Control Theory and Topics in Functional Analysis, Vol. III, Internat. Atomic Energy Agency, Vienna, 1976, 305-405.
[010] [11] W. Köhnen, Einige Saturationssätze für n-Parametrige Halbgruppen von Operatoren, Anal. Numér. Théor. Approx. 9 (1980), 65-73. | Zbl 0449.41008
[011] [12] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[012] [13] D. Pfeifer, Probabilistic representations of operator semigroups - a unifying approach, Semigroup Forum 30 (1984), 17-34. | Zbl 0532.60007
[013] [14] D. Pfeifer, Approximation-theoretic aspects of probabilistic representations for operator semigroups, J. Approx. Theory 43 (1985), 271-296. | Zbl 0572.47028
[014] [15] D. Pfeifer, Probabilistic concepts of approximation theory in connexion with operator semigroups, Approx. Theory Appl. 1 (1985), 93-118. | Zbl 0605.47042
[015] [16] D. Pfeifer, A probabilistic variant of Chernoff's product formula, Semigroup Forum 46 (1993), 279-285. | Zbl 0808.47028
[016] [17] S. Y. Shaw, Approximation of unbounded functions and applications to representations of semigroups, J. Approx. Theory 28 (1980), 238-259. | Zbl 0452.41020
[017] [18] S. Y. Shaw, Some exponential formulas for m-parameter semigroups, Bull. Inst. Math. Acad. Sinica 9 (1981), 221-228. | Zbl 0467.47036
[018] [19] R. H. Wang, The Approximation of Unbounded Functions, Sciences Press, Peking, 1983 (in Chinese).