We consider the second order parabolic partial differential equation . Sufficient conditions are given under which every solution of the above equation must decay or tend to infinity as |x|→ ∞. A sufficient condition is also given under which every solution of a system of the form , where , must decay as t → ∞.
@article{bwmeta1.element.bwnjournal-article-apmv63z3p223bwm, author = {Wei-Cheng Lian and Cheh-Chih Yeh}, title = {On the asymptotic behavior of solutions of second order parabolic partial differential equations}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {223-234}, zbl = {0851.35019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z3p223bwm} }
Wei-Cheng Lian; Cheh-Chih Yeh. On the asymptotic behavior of solutions of second order parabolic partial differential equations. Annales Polonici Mathematici, Tome 63 (1996) pp. 223-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z3p223bwm/
[00000] [1] P. J. Chabrowski, Propriétés asymptotiques d'une mesure associée à l'équation différentielle aux dérivées partielles de type parabolique, Funkc. Ekvac. 13 (1970), 35-43. | Zbl 0199.42604
[00001] [2] L. S. Chen, On the behavior of solutions for large |x| of parabolic equations with unbounded coefficients, Tôhoku Math. J. 20 (1968), 589-595. | Zbl 0174.42005
[00002] [3] L. S. Chen, Note on the behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. J. 37 (1970), 1-4.
[00003] [4] L. S. Chen, Remark on behavior of solutions of some parabolic equations, Tôhoku Math. J. 22 (1970), 511-516. | Zbl 0211.41202
[00004] [5] L. S. Chen, J. S. Lin and C. C. Yeh, Asymptotic behavior of solutions for large |x| of weakly coupled parabolic systems with unbounded coefficients, Hiroshima Math. J. 4 (1974), 477-490. | Zbl 0298.35008
[00005] [6] L. S. Chen, C. C. Yeh and H. Y. Chen, On the behavior of solutions of the Cauchy problem for parabolic equations with unbounded coefficients, Hiroshima Math. J. 1 (1971), 145-153. | Zbl 0267.35046
[00006] [7] C. Cosner, A Phragmén-Lindelöf principle and asymptotic behavior for weakly coupled systems of parabolic equations with unbounded coefficients, Dissertation, University of California, Berkeley, 1977.
[00007] [8] C. Cosner, Asymptotic behavior of solutions of second order parabolic partial differentical equations with unbounded coefficients, J. Differential Equations 35 (1980), 407-428. | Zbl 0403.35044
[00008] [9] S. D. Èĭdel'man and F. O. Porper, Properties of solutions of second-order parabolic equations with dissipation, Differential Equations 7 (1971), 1280-1288. | Zbl 0273.35043
[00009] [10] S. D. Èĭdel'man and F. O. Porper, On the asymptotic behavior of solutions of parabolic systems with dissipation, Soviet Math. Dokl. 12 (1971), 471-475. | Zbl 0229.35050
[00010] [11] M. Krzyżański, Evaluations des solutions de l'équation linéaire de type parabolique à coefficients non bornés, Ann. Polon. Math. 11 (1962), 253-260. | Zbl 0171.07801
[00011] [12] T. Kuroda, Asymptotic behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. J. 37 (1970), 5-12. | Zbl 0198.14302
[00012] [13] T. Kuroda and L. S. Chen, On the behavior of solutions of parabolic equations with unbounded coefficients, Ann. Polon. Math. 23 (1970), 57-64. | Zbl 0207.40503
[00013] [14] T. Kusano, On the decay for large |x| of solutions of parabolic equations with unbounded coefficients, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 3 (1967), 203-210. | Zbl 0162.41901
[00014] [15] T. Kusano, On the behavior of large |x| for solutions of parabolic equations with unbounded coefficients, Funkc. Ekvac. 11 (1968), 169-174. | Zbl 0175.11303
[00015] [16] T. Kusano, T. Kuroda and L. S. Chen, Weakly coupled parabolic systems with unbounded coefficients, Hiroshima Math. J. 3 (1973), 1-14. | Zbl 0271.35041
[00016] [17] T. Kusano, T. Kuroda and L. S. Chen, Some parabolic equations with unbounded coefficients, Funkc. Ekvac. 16 (1973), 1-28. | Zbl 0302.35049
[00017] [18] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1967. | Zbl 0153.13602