On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid
Ewa Zadrzyńska ; Wojciech M. Zajączkowski
Annales Polonici Mathematici, Tome 63 (1996), p. 199-221 / Harvested from The Polish Digital Mathematics Library

We consider the motion of a viscous compressible heat conducting fluid in ℝ³ bounded by a free surface which is under constant exterior pressure. Assuming that the initial velocity is sufficiently small, the initial density and the initial temperature are close to constants, the external force, the heat sources and the heat flow vanish, we prove the existence of global-in-time solutions which satisfy, at any moment of time, the properties prescribed at the initial moment.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262879
@article{bwmeta1.element.bwnjournal-article-apmv63z3p199bwm,
     author = {Ewa Zadrzy\'nska and Wojciech M. Zaj\k aczkowski},
     title = {On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {199-221},
     zbl = {0862.35147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z3p199bwm}
}
Ewa Zadrzyńska; Wojciech M. Zajączkowski. On the global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid. Annales Polonici Mathematici, Tome 63 (1996) pp. 199-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z3p199bwm/

[000] [1] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary, Comm. Pure Appl. Math. 31 (1980), 359-392. | Zbl 0464.76028

[001] [2] J. T. Beale, Large time regularity of viscous surface waves, Arch. Rational Mech. Anal. 84 (1984), 307-352. | Zbl 0545.76029

[002] [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 (in Russian); English transl.: Scripta Series in Mathematics, Winston and Halsted Press, 1979.

[003] [4] L. Landau and E. Lifschitz, Mechanics of Continuum Media, Nauka, Moscow, 1984 (in Russian); English transl.: Pergamon Press, Oxford, 1959; new edition: Hydrodynamics, Nauka, Moscow, 1986 (in Russian).

[004] [5] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67-104. | Zbl 0429.76040

[005] [6] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A 55 (1979), 337-342. | Zbl 0447.76053

[006] [7] A. Matsumura and T. Nishida, The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid, preprint of Univ. of Wisconsin, MRC Technical Summary Report no. 2237 (1981). | Zbl 0543.76099

[007] [8] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of general fluids, in: Computing Methods in Applied Sciences and Engineering, R. Glowinski and J. L. Lions (eds.), North-Holland, Amsterdam, 1982, 389-406. | Zbl 0505.76083

[008] [9] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464. | Zbl 0543.76099

[009] [10] V. A. Solonnikov, A priori estimates for parabolic equations of second order, Trudy Mat. Inst. Steklov 70 (1964), 133-212 (in Russian). | Zbl 0168.08202

[010] [11] V. A. Solonnikov, On an unsteady flow of a finite mass of a liquid bounded by a free surface, Zap. Nauchn. Sem. LOMI 152 (1986), 137-157 (in Russian); English transl.: J. Soviet Math. 40 (1988), 672-686. | Zbl 0614.76026

[011] [12] V. A. Solonnikov, Solvability of the evolution problem for an isolated mass of a viscous incompressible capillary liquid, Zap. Nauchn. Sem. LOMI 140 (1984), 179-186 (in Russian); English transl.: J. Soviet Math. 32 (1986), 223-238. | Zbl 0551.76022

[012] [13] V. A. Solonnikov, On an unsteady motion of an isolated volume of a viscous incompressible fluid, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 1065-1087 (in Russian).

[013] [14] V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid, preprint of Paderborn University. | Zbl 0786.35106

[014] [15] A. Valli and W. M. Zajączkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys. 103 (1986), 259-296. | Zbl 0611.76082

[015] [16] E. Zadrzyńska and W. M. Zajączkowski, On local motion of a general compressible viscous heat conducting fluid bounded by a free surface, Ann. Polon. Math. 59 (1994), 133-170. | Zbl 0812.35102

[016] [17] E. Zadrzyńska and W. M. Zajączkowski, On global motion of a compressible viscous heat conducting fluid bounded by a free surface, Acta Appl. Math. 37 (1994), 221-231. | Zbl 0813.35130

[017] [18] E. Zadrzyńska and W. M. Zajączkowski, Conservation laws in free boundary problems for viscous compressible heat conducting fluids, Bull. Polish Acad. Sci. Tech. Sci. 42 (1994), 197-207. | Zbl 0814.76075

[018] [19] E. Zadrzyńska and W. M. Zajączkowski, On a differential inequality for equations of a viscous compressible heat conducting fluid bounded by a free surface, Ann. Polon. Math. 61 (1995), 141-188. | Zbl 0833.35156

[019] [20] W. M. Zajączkowski, On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface, Dissertationes Math. 324 (1993). | Zbl 0771.76059

[020] [21] W. M. Zajączkowski, On local motion of a compressible barotropic viscous fluid bounded by a free surface, in: Partial Differential Equations, Banach Center Publ. 27, Part 2, Inst. Math., Polish Acad. Sci., 1992, 511-553. | Zbl 0791.35105

[021] [22] W. M. Zajączkowski, Existence of local solutions for free boundary problems for viscous compressible barotropic fluids, Ann. Polon. Math. 60 (1995), 255-287. | Zbl 0923.35134

[022] [23] W. M. Zajączkowski, On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface, SIAM J. Math. Anal. 25 (1994), 1-84. | Zbl 0813.35086