It is proved that a piecewise monotone transformation of the unit interval (with a countable number of pieces) is generically chaotic. The Gauss map arising in connection with the continued fraction expansions of the reals is an example of such a transformation.
@article{bwmeta1.element.bwnjournal-article-apmv63z2p167bwm, author = {J\'ozef Pi\'orek}, title = {An example of a genuinely discontinuous generically chaotic transformation of the interval}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {167-172}, zbl = {0848.54028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p167bwm} }
Józef Piórek. An example of a genuinely discontinuous generically chaotic transformation of the interval. Annales Polonici Mathematici, Tome 63 (1996) pp. 167-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p167bwm/
[000] [1] R. M. Corless, Continued fractions and chaos, Amer. Math. Monthly 99 (1992), 203-215. | Zbl 0758.58020
[001] [2] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, New York, 1982.
[002] [3] T. Gedeon, Generic chaos can be large, Acta Math. Univ. Comenian. 54-55 (1988), 237-241. | Zbl 0725.26006
[003] [4] G. Liao, A note on generic chaos, Ann. Polon. Math. 59 (1994), 101-105. | Zbl 0810.54032
[004] [5] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987.
[005] [6] J. Piórek, On the generic chaos in dynamical systems, Univ. Iagell. Acta Math. 25 (1985), 293-298. | Zbl 0587.54061
[006] [7] J. Piórek, On generic chaos of shifts in function spaces, Ann. Polon. Math. 52 (1990), 139-146. | Zbl 0719.58005
[007] [8] J. Piórek, On weakly mixing and generic chaos, Univ. Iagell. Acta Math. 28 (1991), 245-250. | Zbl 0746.58059
[008] [9] J. Piórek, Ideal gas is generically chaotic, Univ. Iagell. Acta Math.. 32 (1995), 121-128. | Zbl 0832.58032
[009] [10] L. Snoha, Generic chaos, Comment. Math. Univ. Carolin. 31 (1990), 793-810. | Zbl 0724.58044