On some elliptic transmission problems
Christodoulos Athanasiadis ; Ioannis G. Stratis
Annales Polonici Mathematici, Tome 63 (1996), p. 137-154 / Harvested from The Polish Digital Mathematics Library

Boundary value problems for second order linear elliptic equations with coefficients having discontinuities of the first kind on an infinite number of smooth surfaces are studied. Existence, uniqueness and regularity results are furnished for the diffraction problem in such a bounded domain, and for the corresponding transmission problem in all of N. The transmission problem corresponding to the scattering of acoustic plane waves by an infinitely stratified scatterer, consisting of layers with physically different materials, is also studied.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262580
@article{bwmeta1.element.bwnjournal-article-apmv63z2p137bwm,
     author = {Christodoulos Athanasiadis and Ioannis G. Stratis},
     title = {On some elliptic transmission problems},
     journal = {Annales Polonici Mathematici},
     volume = {63},
     year = {1996},
     pages = {137-154},
     zbl = {0848.35135},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p137bwm}
}
Christodoulos Athanasiadis; Ioannis G. Stratis. On some elliptic transmission problems. Annales Polonici Mathematici, Tome 63 (1996) pp. 137-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p137bwm/

[000] [1] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983. | Zbl 0522.35001

[001] [2] G. Dassios, Low frequency scattering theory for a penetrable body with an impenetrable core, SIAM J. Appl. Math. 42 (1982), 272-280. | Zbl 0488.35020

[002] [3] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Physical Origins and Classical Methods, Springer, Berlin, 1990. | Zbl 0683.35001

[003] [4] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4, Integral Equations and Numerical Methods, Springer, Berlin, 1990. | Zbl 0784.73001

[004] [5] D. E. Edmunds and W. D. Evans, Elliptic and degenerate-elliptic operators in unbounded domains, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 591-640. | Zbl 0298.35027

[005] [6] G. Fichera, Existence theorems in elasticity, in: Handbuch der Physik, Springer, Berlin, VIa/2, 1972, 347-389.

[006] [7] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964. | Zbl 0124.30501

[007] [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. | Zbl 0361.35003

[008] [9] D. S. Jones, Acoustic and Electromagnetic Scattering, Clarendon Press, Oxford, 1986.

[009] [10] R. E. Kleinman and G. F. Roach, Boundary integral equations for the three-dimensional Helmholtz equation, SIAM Rev. 16 (1974), 214-236. | Zbl 0253.35023

[010] [11] R. Kress and G. F. Roach, Transmission problems for the Helmholtz equation, J. Math. Phys. 19 (1978), 1433-1437. | Zbl 0433.35017

[011] [12] M. Krzyżański, Partial Differential Equations of Second Order, Vol. 1, PWN - Polish Scientific Publishers, Warszawa, 1971. | Zbl 0209.40003

[012] [13] O. A. Ladyzhenskaya, On the solution of the general diffraction problem, Dokl. Akad. Nauk SSSR 116 (1954), 433-436 (in Russian).

[013] [14] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985. | Zbl 0588.35003

[014] [15] O. A. Oleĭnik, Boundary value problems for linear elliptic and parabolic equations with discontinuous coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 3-20 (in Russian).

[015] [16] G. Stampacchia, Equations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de l'Université de Montréal, 1966. | Zbl 0151.15501