Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.
@article{bwmeta1.element.bwnjournal-article-apmv63z2p115bwm, author = {Andrzej Pelczar}, title = {Uniform stability and semi-stability of motions in dynamical systems on metric spaces}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {115-136}, zbl = {0847.34054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p115bwm} }
Andrzej Pelczar. Uniform stability and semi-stability of motions in dynamical systems on metric spaces. Annales Polonici Mathematici, Tome 63 (1996) pp. 115-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p115bwm/
[000] [1] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970.
[001] [2] A. Pelczar, Semi-stability of motions and regular dependence of limit sets on points in general semi-systems, Ann. Polon. Math. 42 (1983), 263-282. | Zbl 0589.34041
[002] [3] A. Pelczar, Limit sets and prolongations in generalized (multivalued) semi-systems, preprint WS-363, Vrije Universiteit Amsterdam, Faculteit Wiskunde en Informatica, 1990.
[003] [4] A. Pelczar, A contribution to the theory of generalized semi-systems: asymptotic equivalence and generalized prolongational limit sets, to appear.
[004] [5] J. Sabine de Lis, An elementary explicit example of unbounded limit behaviour on the plane, Rev. Acad. Canaria Cienc. 5 (1) (1993), 41-46.
[005] [6] A. Trzepizur, L'équivalence asymptotique au sens de Ważewski: un analogue d'un théorème de Levinson, Bull. Polish Acad. Sci. Math. 36 (1988), 39-46.
[006] [7] T. Ważewski, Sur la coïncidence asymptotique des intégrales de deux systèmes d'équations différentielles, Bull. Acad. Polon. Sci. Lettres Sér. A Sci. Math. 1949, 147-150.