We derive and investigate integral inequalities of Opial type: , where h ∈ H, I = (α,β) is any interval on the real line, H is a class of absolutely continuous functions h satisfying h(α) = 0 or h(β) = 0. Our method is a generalization of the method of [3]-[5]. Given the function r we determine the class of functions s for which quadratic integral inequalities of Opial type hold. Such classes have hitherto been described as the classes of solutions of a certain differential equation. In this paper a wider class of functions s is given which is the set of solutions of a certain differential inequality. This class is determined directly and some new inequalities are found.
@article{bwmeta1.element.bwnjournal-article-apmv63z2p103bwm, author = {Ma\l gorzata Kuchta}, title = {Some quadratic integral inequalities of Opial type}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {103-113}, zbl = {0842.26015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p103bwm} }
Małgorzata Kuchta. Some quadratic integral inequalities of Opial type. Annales Polonici Mathematici, Tome 63 (1996) pp. 103-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z2p103bwm/
[000] [1] P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470-475. | Zbl 0122.30102
[001] [2] D. W. Boyd, Best constants in inequalities related to Opial's inequality, J. Math. Anal. Appl. 25 (1969), 378-387. | Zbl 0176.12702
[002] [3] B. Florkiewicz, Some integral inequalities of Hardy type, Colloq. Math. 43 (1980), 321-330. | Zbl 0473.26007
[003] [4] B. Florkiewicz, On some integral inequalities of Opial type, to appear.
[004] [5] B. Florkiewicz and A. Rybarski, Some integral inequalities of Sturm-Liouville type, Colloq. Math. 36 (1976), 127-141. | Zbl 0354.26007
[005] [6] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, Dordrecht, 1991, 114-142. | Zbl 0744.26011
[006] [7] C. Olech, A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8 (1960), 61-63. | Zbl 0089.27404
[007] [8] Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32. | Zbl 0089.27403
[008] [9] R. Redheffer, Inequalities with three functions, J. Math. Anal. Appl. 16 (1966), 219-242. | Zbl 0144.30702
[009] [10] R. Redheffer, Integral inequalities with boundary terms, in: Inequalities II, Proc. II Symposium on Inequalities, Colorado (USA), August 14-22, 1967, O. Shisha (ed.), New York and London 1970, 261-291.
[010] [11] G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83. | Zbl 0151.05202