The functional |c₄ + pc₂c₃ + qc³₂| is considered in the class of all univalent holomorphic functions in the unit disk. For real values p and q in some regions of the (p,q)-plane the estimates of this functional are obtained by the area method for univalent functions. Some new regions are found where the Koebe function is extremal.
@article{bwmeta1.element.bwnjournal-article-apmv63z1p7bwm, author = {Larisa Gromova and Alexander Vasil'ev}, title = {On the estimate of the fourth-order homogeneous coefficient functional for univalent functions}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {7-12}, zbl = {0844.30010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z1p7bwm} }
Larisa Gromova; Alexander Vasil'ev. On the estimate of the fourth-order homogeneous coefficient functional for univalent functions. Annales Polonici Mathematici, Tome 63 (1996) pp. 7-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z1p7bwm/
[000] [1] Z. J. Jakubowski, H. Siejka and O. Tammi, On the maximum of a₄ - 3a₂a₃ + μa₂ and some related functionals for bounded real univalent functions, Ann. Polon. Math. 46 (1985), 115-128. | Zbl 0596.30026
[001] [2] J. Ławrynowicz and O. Tammi, On estimating of a fourth order functional for bounded univalent functions, Ann. Acad. Sci. Fenn. Ser. AI 490 (1971), 1-18. | Zbl 0226.30015
[002] [3] N. A. Lebedev, Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975 (in Russian). | Zbl 0747.30015
[003] [4] P. Lehto, On fourth-order homogeneous functionals in the class of bounded univalent functions, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 48 (1984). | Zbl 0523.30014
[004] [5] K. Włodarczyk, On certain non-homogeneous combinations of coefficients of bounded univalent functions, Demonstratio Math. 16 (1983), 919-924. | Zbl 0586.30014