The Nielsen fixed point theory is used to show several results for certain operator equations involving weakly inward mappings.
@article{bwmeta1.element.bwnjournal-article-apmv63z1p1bwm, author = {Michal Fe\v ckan}, title = {Note on weakly inward mappings}, journal = {Annales Polonici Mathematici}, volume = {63}, year = {1996}, pages = {1-5}, zbl = {0847.47040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv63z1p1bwm} }
Michal Fečkan. Note on weakly inward mappings. Annales Polonici Mathematici, Tome 63 (1996) pp. 1-5. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv63z1p1bwm/
[000] [1] R. F. Brown, Nielsen fixed point theory and parametrized differential equations, in: Contemp. Math. 72, Amer. Math. Soc., 1989, 33-46.
[001] [2] R. F. Brown, Topological identification of multiple solutions to parametrized nonlinear equations, Pacific J. Math. 131 (1988), 51-69. | Zbl 0615.47042
[002] [3] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
[003] [4] M. Fečkan, Nielsen fixed point theory and nonlinear equations, J. Differential Equations 106 (1993), 312-331. | Zbl 0839.47041
[004] [5] S. Hu and Y. Sun, Fixed point index for weakly inward mappings, J. Math. Anal. Appl. 172 (1993), 266-273. | Zbl 0782.47045
[005] [6] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., 1983. | Zbl 0512.55003