Alexander’s projective capacity for the polydisk and the ellipsoid in is computed. Sharper versions of two inequalities concerning this capacity and some other capacities in are given. A sequence of orthogonal polynomials with respect to an appropriately defined measure supported on a compact subset K in is proved to have an asymptotic behaviour in similar to that of the Siciak homogeneous extremal function associated with K.
@article{bwmeta1.element.bwnjournal-article-apmv62z3p245bwm, author = {Mieczys\l aw J\k edrzejowski}, title = {Alexander's projective capacity for polydisks and ellipsoids in $$\mathbb{C}$^N$ }, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {245-264}, zbl = {0838.31008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv62z3p245bwm} }
Mieczysław Jędrzejowski. Alexander’s projective capacity for polydisks and ellipsoids in $ℂ^N$ . Annales Polonici Mathematici, Tome 62 (1995) pp. 245-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv62z3p245bwm/
[000] [1] H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
[001] [2] U. Cegrell and S. Kołodziej, An identity between two capacities, Univ. Iagel. Acta Math. 30 (1993), 155-157. | Zbl 0837.31004
[002] [3] M. Jędrzejowski, The homogeneous transfinite diameter of a compact subset of , Ann. Polon. Math. 55 (1991), 191-205. | Zbl 0748.31008
[003] [4] J. Siciak, On an extremal function and domains of convergence of series of homogeneous polynomials, Ann. Polon. Math. 10 (1961), 297-307. | Zbl 0192.18102
[004] [5] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | Zbl 0111.08102
[005] [6] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in , Sophia Kokyuroku in Math. 14, Sophia University, Tokyo, 1982.
[006] [7] J. Siciak, Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (1988), 193-211. | Zbl 0634.31005
[007] [8] A. Zériahi, Capacité, constante de Čebyšev et polynômes orthogonaux associés à un compact de , Bull. Sci. Math. (2) 109 (1985), 325-335. | Zbl 0583.31006