We present a model for two doubly commuting operator weighted shifts. We also investigate general pairs of operator weighted shifts. The above model generalizes the model for two doubly commuting shifts. WOT-closed algebras for such pairs are described. We also deal with reflexivity for such pairs assuming invertibility of operator weights and a condition on the joint point spectrum.
@article{bwmeta1.element.bwnjournal-article-apmv62z2p97bwm,
author = {Marek Ptak},
title = {The algebra generated by a pair of operator weighted shifts},
journal = {Annales Polonici Mathematici},
volume = {62},
year = {1995},
pages = {97-110},
zbl = {0836.47035},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv62z2p97bwm}
}
Marek Ptak. The algebra generated by a pair of operator weighted shifts. Annales Polonici Mathematici, Tome 62 (1995) pp. 97-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv62z2p97bwm/
[000] [1] N. P. Jawell and A. R. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory 1 (1979), 207-223. | Zbl 0431.47016
[001] [2] A. Lambert, The algebra generated by an invertibly weighted shift, J. London Math. Soc. (2) 5 (1972), 741-747. | Zbl 0244.46079
[002] [3] A. Lambert, Unitary equivalence and reducibility of invertibly weighted shifts, Bull. Austral. Math. Soc. 5 (1971), 157-173. | Zbl 0217.45303
[003] [4] M. Ptak, Reflexivity of pairs of shifts, Proc. Amer. Math. Soc. 109 (1990), 409-415. | Zbl 0734.47023
[004] [5] A. L. Shields and L. J. Wallen, The commutant of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1971), 777-788. | Zbl 0207.13801
[005] [6] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262. | Zbl 0485.47018