Let F = X + H be a cubic homogeneous polynomial automorphism from to . Let be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that . We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.
@article{bwmeta1.element.bwnjournal-article-apmv62z2p173bwm, author = {Arno van den Essen}, title = {A counterexample to a conjecture of Dru\.zkowski and Rusek}, journal = {Annales Polonici Mathematici}, volume = {62}, year = {1995}, pages = {173-176}, zbl = {0838.14008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv62z2p173bwm} }
Arno van den Essen. A counterexample to a conjecture of Drużkowski and Rusek. Annales Polonici Mathematici, Tome 62 (1995) pp. 173-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv62z2p173bwm/
[000] [1] H. Bass, E. Connell, and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330. | Zbl 0539.13012
[001] [2] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313. | Zbl 0504.13006
[002] [3] L. M. Drużkowski, The Jacobian Conjecture: some steps towards solution, in: Automorphisms of Affine Spaces, Proc. Conf. 'Invertible Polynomial Maps', Curaçao, July 4-8, 1994, A. R. P. van den Essen (ed.), Caribbean Mathematics Foundation, Kluwer Academic Publishers, 1995, 41-54. | Zbl 0839.13012
[003] [4] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90. | Zbl 0644.12010
[004] [5] E.-M. G. M. Hubbers, The Jacobian Conjecture: cubic homogeneous maps in dimension four, master thesis, Univ. of Nijmegen, February 17, 1994; directed by A. R. P. van den Essen.
[005] [6] K. Rusek and T. Winiarski, Polynomial automorphisms of , Univ. Iagel. Acta Math. 24 (1984), 143-149.
[006] [7] A. V. Yagzhev, On Keller's problem, Siberian Math. J. 21 (1980), 747-754. | Zbl 0466.13009
[007] [8] J.-T. Yu, On the Jacobian Conjecture: reduction of coefficients, J. Algebra 171 (1995), 515-523. | Zbl 0816.13017